Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 880770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757242

RESUMO

Background: Diet is one of the most important modifiable lifestyle factors in human health and in chronic disease prevention. Thus, accurate dietary assessment is essential for reliably evaluating adherence to healthy habits. Objectives: The aim of this study was to identify urinary metabolites that could serve as robust biomarkers of diet quality, as assessed through the Alternative Healthy Eating Index (AHEI-2010). Design: We set up two-center samples of 160 healthy volunteers, aged between 25 and 50, living as a couple or family, with repeated urine sampling and dietary assessment at baseline, and 6 and 12 months over a year. Urine samples were subjected to large-scale metabolomics analysis for comprehensive quantitative characterization of the food-related metabolome. Then, lasso regularized regression analysis and limma univariate analysis were applied to identify those metabolites associated with the AHEI-2010, and to investigate the reproducibility of these associations over time. Results: Several polyphenol microbial metabolites were found to be positively associated with the AHEI-2010 score; urinary enterolactone glucuronide showed a reproducible association at the three study time points [false discovery rate (FDR): 0.016, 0.014, 0.016]. Furthermore, other associations were found between the AHEI-2010 and various metabolites related to the intake of coffee, red meat and fish, whereas other polyphenol phase II metabolites were associated with higher AHEI-2010 scores at one of the three time points investigated (FDR < 0.05 or ß ≠ 0). Conclusion: We have demonstrated that urinary metabolites, and particularly microbiota-derived metabolites, could serve as reliable indicators of adherence to healthy dietary habits. Clinical Trail Registration: www.ClinicalTrials.gov, Identifier: NCT03169088.

2.
Mol Nutr Food Res ; 66(12): e2100872, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420736

RESUMO

SCOPE: The consumption of processed meat is associated with increased risk of chronic diseases, but determining how the exposure to specific cooking processes alters the metabolome is an analytical challenge. This study aims to evaluate the impact of four typical cooking methods for beef (boiling, barbecuing, grilling, and roasting) on the urinary metabolite profiles in rats, using a non-targeted approach. METHODS AND RESULTS: Male Wistar rats (n  =  48) are fed for 3 weeks with experimental diets containing either raw or cooked (boiled, barbecued, grilled, and roasted) beef. A control group is fed with milk proteins. The 24 h-urines are analyzed using LC-MS. The consumption of boiled meat leads to the specific excretion of di- and tri-peptides (aspartyl-leucine, glycyl-aspartate, and aspartyl-prolyl-threonine) and a cyclo-prolyl-proline (p < 0.001). No singular metabolite specifically associated with the groups "grilled," "roasted," and "barbecued" meat is observed. CONCLUSION: Urinary metabolite profiles of rats fed boiled beef are clearly distinct from those of rats fed with raw, grilled, roasted, or barbecued beef. The specific metabolites include the products of non-digested proteins and may be useful as potential intake biomarkers of this meat cooking method.


Assuntos
Culinária , Carne Vermelha , Animais , Bovinos , Culinária/métodos , Dieta , Masculino , Carne , Ratos , Ratos Wistar , Carne Vermelha/análise
3.
Mol Nutr Food Res ; 63(1): e1700834, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29468821

RESUMO

SCOPE: The impact of meat consumption on human health is widely examined in nutritional epidemiological studies, especially due to the connection between the consumption of red and processed meat and the risk of colon cancer. Food questionnaires do not assess the exposure to different methods of meat cooking. This study aimed to identify biomarkers of the acute ingestion of bovine meat cooked with two different processes. METHODS AND RESULTS: Non-targeted UPLC-MS metabolite profiling was done on urine samples obtained from 24 healthy volunteers before and 8 h after the ingestion of a single meal composed of intrinsically 15 N labelled bovine meat, either cooked at 55 °C for 5 min or at 90 °C for 30 min. A discriminant analysis extension of independent components analysis was applied to the mass spectral data. After meat ingestion, the urinary excretion of 1-methylhistidine, phenylacetylglutamine, and short- and medium-chained acylcarnitines was observed. 15 N labelling was detected in these metabolites, thus confirming their origin from ingested meat. However, no difference was observed in urinary metabolomic profiles according to the meat cooking process used. CONCLUSION: Meat ingestion led to the excretion of several nitrogen-containing compounds, but although a metabolic signature was detected for meat ingestion, the impact of the cooking process was not detectable at the level of urinary metabolic signature in our experimental conditions.


Assuntos
Biomarcadores/urina , Carne Vermelha , Urina/química , Acetilcarnitina/urina , Adulto , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Culinária , Ingestão de Alimentos , Feminino , Glutamina/análogos & derivados , Glutamina/urina , Voluntários Saudáveis , Humanos , Masculino , Metaboloma , Metilistidinas/urina , Isótopos de Nitrogênio/urina , Espectrometria de Massas em Tandem/métodos
4.
Am J Physiol Endocrinol Metab ; 315(4): E454-E459, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920213

RESUMO

In the postprandial state, glucose homeostasis is challenged by macronutrient intake, including proteins that trigger insulin secretion and provide glucose precursors. However, little is known about the postprandial response of gluconeogenesis to a protein meal. We aimed to quantify the evolution of fractional gluconeogenesis after a meat meal. Thirteen healthy subjects received oral doses of D2O. After fasting overnight, they ingested a steak (120 g). Glycemia, insulinemia, and 2H enrichments in glucose and plasma water were measured for 8 h after the meal. Fractional gluconeogenesis was assessed using the average method. Glucose was stable for 5 h and then decreased. There was a slight increase of insulin 1 h after the meal. 2H enrichment in the carbon 5 position of glucose (C5) increased after 2 h, whereas it decreased in plasma water. Consequently, fractional gluconeogenesis increased from 68.2 ± 7.2% before the meal to 75.5 ± 5.8% 8 h after the meal, the latter corresponding to 22 h without a glucose supply. These values are consistent with the exhaustion of glycogen stores after 24 h but represent the highest among values in the literature. The impact of methodological conditions is discussed.


Assuntos
Glicemia/metabolismo , Água Corporal/metabolismo , Proteínas Alimentares , Gluconeogênese/fisiologia , Insulina/metabolismo , Período Pós-Prandial/fisiologia , Carne Vermelha , Adulto , Óxido de Deutério , Jejum , Feminino , Voluntários Saudáveis , Humanos , Masculino , Plasma/metabolismo , Fatores de Tempo , Adulto Jovem
5.
Mol Nutr Food Res ; 62(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994235

RESUMO

SCOPE: Food structure is a key factor controlling digestion and nutrient absorption. We test the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. METHODS & RESULTS: Rats (n = 40) are fed for 3 weeks with two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and microstructure levels. After an overnight fasting, they ingest a 15 N-labeled LFE or GCE test meal and are euthanized 0, 15 min, 1 h, and 5 h later. 15 N enrichment in intestinal contents and blood are measured. Gastric emptying, protein digestion kinetics, 15 N absorption, and incorporation in blood protein and urea are faster with LFE than GCE. At 15 min time point, LFE group shows higher increase in GIP portal levels than GCE. Three weeks of dietary adaptation leads to higher expression of cationic amino acid transporters in ileum of LFE compared to GCE. LFE diet raises cecal butyrate and isovalerate proportion relative to GCE, suggesting increased protein fermentation. LFE diet increases fecal Parabacteroides relative abundance but decreases Bifidobacterium, Sutterella, Parasutterella genera, and Clostridium cluster XIV abundance. CONCLUSION: Protein emulsion structure regulates digestion kinetics and gastrointestinal physiology, and could be targeted to improve food health value.


Assuntos
Emulsões/química , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lipoproteínas/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/farmacocinética , Animais , Peso Corporal/efeitos dos fármacos , Dieta , Proteínas Alimentares/farmacocinética , Digestão , Emulsões/farmacologia , Mucosa Intestinal/fisiologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Lipoproteínas/farmacologia , Masculino , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/farmacocinética , Ratos Wistar
6.
J Nutr ; 146(8): 1506-13, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27385760

RESUMO

BACKGROUND: Cooking may impair meat protein digestibility. When undigested proteins are fermented by the colon microbiota, they can generate compounds that potentially are harmful to the mucosa. OBJECTIVES: This study addressed the effects of typical cooking processes and the amount of bovine meat intake on the quantity of undigested proteins entering the colon, as well as their effects on the intestinal mucosa. METHODS: Male Wistar rats (n = 88) aged 8 wk were fed 11 different diets containing protein as 20% of energy. In 10 diets, bovine meat proteins represented 5% [low-meat diet (LMD)] or 15% [high-meat diet (HMD)] of energy, with the rest as total milk proteins. Meat was raw or cooked according to 4 processes (boiled, barbecued, grilled, or roasted). A meat-free diet contained only milk proteins. After 3 wk, rats ingested a (15)N-labeled meat meal and were killed 6 h later after receiving a (13)C-valine injection. Meat protein digestibility was determined from (15)N enrichments in intestinal contents. Cecal short- and branched-chain fatty acids and hydrogen sulfide were measured. Intestinal tissues were used for the assessment of protein synthesis rates, inflammation, and histopathology. RESULTS: Meat protein digestibility was lower in rats fed boiled meat (94.5% ± 0.281%) than in the other 4 groups (97.5% ± 0.0581%, P < 0.001). Cecal and colonic bacterial metabolites, inflammation indicators, and protein synthesis rates were not affected by cooking processes. The meat protein amount had a significant effect on cecal protein synthesis rates (LMD > HMD) and on myeloperoxidase activity in the proximal colon (HMD > LMD), but not on other outcomes. The ingestion of bovine meat, whatever the cooking process and the intake amount, resulted in discrete histologic modifications of the colon (epithelium abrasion, excessive mucus secretion, and inflammation). CONCLUSIONS: Boiling bovine meat at a high temperature (100°C) for a long time (3 h) moderately lowered protein digestibility compared with raw meat and other cooking processes, but did not affect cecal bacterial metabolites related to protein fermentation. The daily ingestion of raw or cooked bovine meat had no marked effect on intestinal tissues, despite some slight histologic modifications on distal colon.


Assuntos
Colo/patologia , Culinária/métodos , Dieta , Proteínas Alimentares/metabolismo , Digestão , Mucosa Intestinal , Carne Vermelha , Animais , Bovinos , Ceco/metabolismo , Ceco/microbiologia , Colo/metabolismo , Colo/microbiologia , Ácidos Graxos Voláteis/metabolismo , Comportamento Alimentar , Fermentação , Inflamação/etiologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Peroxidase/metabolismo , Biossíntese de Proteínas , Ratos Wistar
7.
J Trace Elem Med Biol ; 35: 107-15, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27049134

RESUMO

Although copper (Cu) is recognized as an essential trace element, uncertainties remain regarding Cu reference values for humans, as illustrated by discrepancies between recommendations issued by different national authorities. This review examines human studies published since 1990 on relationships between Cu intake, Cu balance, biomarkers of Cu status, and health. It points out several gaps and unresolved issues which make it difficult to assess Cu requirements. Results from balance studies suggest that daily intakes below 0.8 mg/day lead to net Cu losses, while net gains are consistently observed above 2.4 mg/day. However, because of an incomplete collection of losses in all studies, a precise estimation of Cu requirements cannot be derived from available data. Data regarding the relationship between Cu intake and potential biomarkers are either too preliminary or inconclusive because of low specificity or low sensitivity to change in dietary Cu over a wide range of intakes. Results from observation and intervention studies do not support a link between Cu and a risk of cardiovascular disease, cognitive decline, arthritis or cancer for intakes ranging from 0.6 to 3mg/day, and limited evidence exists for impaired immune function in healthy subjects with a very low (0.38 mg/day) Cu intake. However, data from observation studies should be regarded with caution because of uncertainties regarding Cu concentration in various foods and water. Further studies that accurately evaluate Cu exposure based on reliable biomarkers of Cu status are needed.


Assuntos
Cobre/metabolismo , Dieta , Saúde , Biomarcadores/metabolismo , Comportamento Alimentar , Humanos
8.
J Nutr ; 145(10): 2221-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26290008

RESUMO

BACKGROUND: Meat protein digestibility can be impaired because of indigestible protein aggregates that form during cooking. When the aggregates are subsequently fermented by the microbiota, they can generate potentially harmful compounds for the colonic mucosa. OBJECTIVE: This study evaluated the quantity of bovine meat protein escaping digestion in the human small intestine and the metabolic fate of exogenous nitrogen, depending on cooking processes. METHODS: Sixteen volunteers (5 women and 11 men; aged 28 ± 8 y) were equipped with a double lumen intestinal tube positioned at the ileal level. They received a test meal exclusively composed of 120 g of intrinsically (15)N-labeled bovine meat, cooked either at 55°C for 5 min (n = 8) or at 90°C for 30 min (n = 8). Ileal effluents and blood and urine samples were collected over an 8-h period after the meal ingestion, and (15)N enrichments were measured to assess the digestibility of meat proteins and the transfer of dietary nitrogen into the metabolic pools. RESULTS: Proteins tended to be less digestible for the meat cooked at 90°C for 30 min than at 55°C for 5 min (90.1% ± 2.1% vs. 94.1% ± 0.7% of ingested N; P = 0.08). However, the particle number and size in ileal digesta did not differ between groups. The appearance of variable amounts of intact fibers was observed by microscopy. The kinetics of (15)N appearance in plasma proteins, amino acids, and urea were similar between groups. The amount of exogenous nitrogen lost through deamination did not differ between groups (21.2% ± 0.8% of ingested N). CONCLUSIONS: Cooking bovine meat at a high temperature for a long time can moderately decrease protein digestibility compared with cooking at a lower temperature for a short time and does not affect postprandial exogenous protein metabolism in young adults. The study was registered at www.clinicaltrials.gov as NCT01685307.


Assuntos
Culinária , Proteínas Alimentares/metabolismo , Digestão , Íleo/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Carne , Adulto , Animais , Bovinos , Estudos Cross-Over , Feminino , Temperatura Alta/efeitos adversos , Humanos , Masculino , Nitrogênio/sangue , Nitrogênio/metabolismo , Nitrogênio/urina , Isótopos de Nitrogênio , Método Simples-Cego , Fatores de Tempo , Adulto Jovem
9.
PLoS One ; 8(11): e81495, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312309

RESUMO

Prolonged inactivity induces muscle loss due to an activation of proteolysis and decreased protein synthesis; the latter is also involved in the recovery of muscle mass. The aim of the present work was to explore the evolution of muscle mass and protein metabolism during immobilization and recovery and assess the effect of a nutritional strategy for counteracting muscle loss and facilitating recovery. Adult rats (6-8 months) were subjected to unilateral hindlimb casting for 8 days (I0-I8) and then permitted to recover for 10 to 40 days (R10-R40). They were fed a Control or Experimental diet supplemented with antioxidants/polyphenols (AOX) (I0 to I8), AOX and leucine (AOX + LEU) (I8 to R15) and LEU alone (R15 to R40). Muscle mass, absolute protein synthesis rate and proteasome activities were measured in gastrocnemius muscle in casted and non-casted legs in post prandial (PP) and post absorptive (PA) states at each time point. Immobilized gastrocnemius protein content was similarly reduced (-37%) in both diets compared to the non-casted leg. Muscle mass recovery was accelerated by the AOX and LEU supplementation (+6% AOX+LEU vs. Control, P<0.05 at R40) due to a higher protein synthesis both in PA and PP states (+23% and 31% respectively, Experimental vs. Control diets, P<0.05, R40) without difference in trypsin- and chymotrypsin-like activities between diets. Thus, this nutritional supplementation accelerated the recovery of muscle mass via a stimulation of protein synthesis throughout the entire day (in the PP and PA states) and could be a promising strategy to be tested during recovery from bed rest in humans.


Assuntos
Antioxidantes/farmacologia , Suplementos Nutricionais , Imobilização/efeitos adversos , Leucina/farmacologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/efeitos dos fármacos , Absorção Fisiológica , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Leucina/sangue , Masculino , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Tamanho do Órgão/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Período Pós-Prandial/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...