Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(41)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38901407

RESUMO

Unique properties possessed by transition metal dichalcogenides (TMDs) attract much attention in terms of investigation of their formation and dependence of their characteristics on the production process parameters. Here, we investigate the formation of TMD films during chemical vapor deposition (CVD) in a mixture of thermally activated gaseous H2S and vaporized transition metals. Our observations of changes in morphology, Raman spectra, and photoluminescence (PL) properties in combination within situmeasurements of the electrical conductivity of the deposits formed at various precursor concentrations and CVD durations are evidence of existence of particular stages in the TMD material formation. Gradual transformation of PL spectra from trion to exciton type is detected for different stages of the material formation. The obtained results and proposed methods provide tailoring of TMD film characteristics necessary for particular applications like photodetectors, photocatalysts, and gas sensors.

2.
Opt Lett ; 45(7): 2022-2025, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236058

RESUMO

We report the helicity-dependent photocurrent in the carbon nanowall film synthesized on the silicon substrates by the chemical vapor deposition technique. The film is composed of multilayer graphene flakes grown along the substrate normal. We measured the transverse photocurrent generated in the film under irradiation with nanosecond laser pulses by depositing two conductive electrodes along the plane of incidence. The measurements were performed by using elliptically polarized fundamental, second-, third-, and fourth-harmonics beams of the Nd:YAG laser. We revealed that the shorter the excitation wavelength, the higher the magnitude of the helicity-dependent transverse photocurrent generated in the film. In particular, at wavelengths of 266 and 355 nm, the photocurrent strongly depends on the degree of the circular polarization of the laser beam while, at the wavelength of 1064 nm, the transverse photocurrent is almost helicity independent.

3.
Nanoscale ; 11(14): 6852-6858, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30912570

RESUMO

Practical realization of stable and high brightness sources of ultra-short electron pulses is an important issue in the development of time-resolved electron microscopy for the study of ultra-fast dynamics in materials. Here, we report on the experimental investigation of static (in the dark) and pulsed (under illumination by sub-picosecond laser pulses at 1040 nm) electron emission from single-crystal diamond needles. A significant increase of electron emission current was detected under laser illumination. The nonlinear dependence of the emission current on the laser intensity and on the angle between the needle and the laser beam polarization axis suggests multi-photon emission processes. This interpretation is in agreement with electron spectroscopy measurements performed for electrons emitted at different bias voltages and different laser power levels and repetition rates. The remarkable feature of the diamond emitters is their stability under high average power of laser radiation. This provides a new highly efficient source of photoemitted electrons based on single-crystal diamond.

4.
Nano Lett ; 17(12): 7401-7409, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29095635

RESUMO

The application of a high electrostatic field at the apex of monocrystalline diamond nanoscale needles induces an energy splitting of the photoluminescence lines of color centers. In particular, the splitting of the zero-phonon line of the neutral nitrogen-vacancy complex (NV0) has been studied within a laser-assisted tomographic atom probe equipped with an in situ microphotoluminescence bench. The measured quadratic dependence of the energy splitting on the applied voltage corresponds to the stress generated on the metal-like apex surface by the electrostatic field. Tensile stress up to 7 GPa has thus been measured in the proximity of the needle apex. Furthermore, the stress scales along the needle shank inversely proportionally to its axial cross section. We demonstrate thus a method for contactless piezo-spectroscopy of nanoscale systems by electrostatic field regulation for the study of their mechanical properties. These results also provide an experimental confirmation to the models of dielectrics surface metallization under high electrostatic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA