Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(41)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35785757

RESUMO

Improving the thruster efficiency is a crucial challenge for the development of space electric propulsion systems, especially advanced air-breathing thrusters utilizing the surrounding rarefied atmosphere as fuel. A significant reduction in thruster power consumption can be achieved by using field emission (FE) cathodes that do not require heating and have the highest energy efficiency. In this work, we study FE from nano-graphite thin films, consisting of carbon nanostructures with a high aspect ratio, and demonstrate their suitability for use in the space electric propulsion systems. The films shown appropriate FE characteristics in a wide range of gas pressures at high current loads in constant and pulsed operation modes. Based on the obtained experimental results, nano-graphite cathodes were employed for the design of an electron gun with increased reliability and minimized energy losses associated with electron extraction. The possibility of using such a gun in a specific air-breathing satellite operating in low Earth orbits is demonstrated.

2.
Ultramicroscopy ; 202: 51-56, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30959241

RESUMO

We report results of experimental investigation of field electron emission from diamond nanoemitters. The measurements were performed with single crystal diamond needles fixed at tungsten tips. The voltage drop along diamond needles during emission was revealed and measured using electron energy spectroscopy. The observed linear dependence of the voltage drop in diamond on voltage applied to the tungsten tip is explained in the frame of a simple macroscopic electrical model combining Poole-Frenkel conduction along the diamond tip and Fowler-Nordheim tunneling at the diamond-vacuum junction. Experimental evidences of electron emission sensitivity to laser illumination are discussed for possible modification of diamond emitter characteristics and voltage drop.

3.
Sci Rep ; 6: 35260, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731379

RESUMO

Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

4.
Nanotechnology ; 27(45): 455707, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727156

RESUMO

Diamond is attractive for various applications due to its unique mechanical and optical properties. In particular, single crystal diamond needles with high aspect ratios and sharp apexes of nanometer size are demanded for different types of optical sensors including optically sensing tip probes for scanning microscopy. This paper reports on electron microscopy and Raman spectroscopy characterization of the diamond needles having geometrically perfect pyramidal shapes with rectangular atomically flat bases with (001) crystallography orientation, 2-200 nm sharp apexes, and with lengths from about 10-160 µm. The needles were produced by selective oxidation of (001) textured polycrystalline diamond films grown by chemical vapor deposition. Here we study the types and distribution of defects inside and on the surface of the single crystal diamond needles. We show that sp3 type point defects are incorporated into the volume of the diamond crystal during growth, while the surface of the lateral facets is enriched by multiple extended defects. Nitrogen addition to the reaction mixture results in increase of the growth rate on {001} facets correlated with the rise in the concentration of sp3 type defects.

5.
Sci Rep ; 4: 4007, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24500084

RESUMO

Graphene has recently become a unique playground for studying light-matter interaction effects in low-dimensional electronic systems. Being of strong fundamental importance, these effects also open a wide range of opportunities in photonics and optoelectronics. In particular, strong and broadband light absorption in graphene allows one to achieve high carrier densities essential for observation of nonlinear optical phenomena. Here, we make use of strong photon-drag effect to generate and optically manipulate ultrafast photocurrents in graphene at room temperature. In contrast to the recent reports on injection of photocurrents in graphene due to external or built-in electric field effects and by quantum interference, we force the massless charge carriers to move via direct transfer of linear momentum from photons of incident laser beam to excited electrons in unbiased sample. Direction and amplitude of the drag-current induced in graphene are determined by polarization, incidence angle and intensity of the obliquely incident laser beam. We also demonstrate that the irradiation of graphene with two laser beams of the same wavelength offers an opportunity to manipulate the photocurrents in time domain. The obtained all-optical control of the photocurrents opens new routes towards graphene based high-speed and broadband optoelectronic devices.

6.
Beilstein J Nanotechnol ; 4: 493-500, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24062975

RESUMO

The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.

7.
Nano Lett ; 11(4): 1540-5, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21443162

RESUMO

We report the ultrafast light-induced absorbance change in CVD-grown multilayer graphene. Using femtosecond pump-probe measurements in 1100-1800 nm spectral range, we revealed broadband absorbance change when the probe photon energy was higher than that of the pump photon. The observed phenomenon is interpreted in terms of the Auger recombination and impact ionization playing a significant role in the dynamics of photoexcited carriers in graphene.


Assuntos
Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Luz , Teste de Materiais , Tamanho da Partícula , Espalhamento de Radiação
8.
Rev Sci Instrum ; 81(1): 013703, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20113103

RESUMO

Single crystal diamond tips with perfect pyramidal geometry were obtained by a combination of chemical vapor deposition and selective oxidation of polycrystalline films. The parameters of the deposition process were chosen to provide growth of a textured film consisting of micrometer sized diamond crystallites embedded into nanodiamond ballas-like material. The heating of the film in an air environment was used for selective oxidation of the nanodiamond component. The films obtained contain free standing pyramidal single crystal diamond tips oriented by their apexes to the substrate surface. The tips were used for the fabrication of atomic force microscopy probes and their evaluation in comparison to common silicon probes.

9.
Nanotechnology ; 20(16): 165603, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19420573

RESUMO

Nanowires (NWs) of metal oxides (Fe(2)O(3), CuO, V(2)O(5) and ZnO) were grown by an efficient non-catalytic economically favorable method based on resistive heating of pure metal wires or foils at ambient conditions. The growth rate of iron oxide NWs exceeds 100 nm s(-1). Produced NWs were typically 1-5 microm long with diameters from 10 to 50 nm. The produced metal oxide NWs were characterized by means of SEM, TEM, EDX, XPS and Raman techniques. The field emission measurements from the as-produced CuO NWs were found to have a threshold field as low as 4 V microm(-1) at 0.01 mA cm(-2). The formation mechanism of the NWs is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA