Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536085

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is a crucial stress sensor, directing cells toward apoptosis, differentiation, and senescence via the p38 and JNK signaling pathways. ASK1 dysregulation has been associated with cancer and inflammatory, cardiovascular, and neurodegenerative diseases, among others. However, our limited knowledge of the underlying structural mechanism of ASK1 regulation hampers our ability to target this member of the MAP3K protein family towards developing therapeutic interventions for these disorders. Nevertheless, as a multidomain Ser/Thr protein kinase, ASK1 is regulated by a complex mechanism involving dimerization and interactions with several other proteins, including thioredoxin 1 (TRX1). Thus, the present study aims at structurally characterizing ASK1 and its complex with TRX1 using several biophysical techniques. As shown by cryo-EM analysis, in a state close to its active form, ASK1 is a compact and asymmetric dimer, which enables extensive interdomain and interchain interactions. These interactions stabilize the active conformation of the ASK1 kinase domain. In turn, TRX1 functions as a negative allosteric effector of ASK1, modifying the structure of the TRX1-binding domain and changing its interaction with the tetratricopeptide repeats domain. Consequently, TRX1 reduces access to the activation segment of the kinase domain. Overall, our findings not only clarify the role of ASK1 dimerization and inter-domain contacts but also provide key mechanistic insights into its regulation, thereby highlighting the potential of ASK1 protein-protein interactions as targets for anti-inflammatory therapy.


Assuntos
MAP Quinase Quinase Quinase 5 , Tiorredoxinas , Microscopia Crioeletrônica , Apoptose , Biofísica
2.
Front Mol Biosci ; 11: 1327014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328397

RESUMO

Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.

3.
Protein Sci ; 32(11): e4805, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817008

RESUMO

Ca2+ /CaM-dependent protein kinase kinases 1 and 2 (CaMKK1 and CaMKK2) phosphorylate and enhance the catalytic activity of downstream kinases CaMKI, CaMKIV, and protein kinase B. Accordingly, CaMKK1 and CaMKK2 regulate key physiological and pathological processes, such as tumorigenesis, neuronal morphogenesis, synaptic plasticity, transcription factor activation, and cellular energy homeostasis, and promote cell survival. Both CaMKKs are partly inhibited by phosphorylation, which in turn triggers adaptor and scaffolding protein 14-3-3 binding. However, 14-3-3 binding only significantly affects CaMKK1 function. CaMKK2 activity remains almost unchanged after complex formation for reasons still unclear. Here, we aim at structurally characterizing CaMKK1:14-3-3 and CaMKK2:14-3-3 complexes by SAXS, H/D exchange coupled to MS, and fluorescence spectroscopy. The results revealed that complex formation suppresses the interaction of both phosphorylated CaMKKs with Ca2+ /CaM and affects the structure of their kinase domains and autoinhibitory segments. But these effects are much stronger on CaMKK1 than on CaMKK2 because the CaMKK1:14-3-3γ complex has a more compact and rigid structure in which the active site of the kinase domain directly interacts with the last two C-terminal helices of the 14-3-3γ protein, thereby inhibiting CaMKK1. In contrast, the CaMKK2:14-3-3 complex has a looser and more flexible structure, so 14-3-3 binding only negligibly affects the catalytic activity of CaMKK2. Therefore, Ca2+ /CaM binding suppression and the interaction of the kinase active site of CaMKK1 with the last two C-terminal helices of 14-3-3γ protein provide the structural basis for 14-3-3-mediated CaMKK1 inhibition.


Assuntos
Proteínas 14-3-3 , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Proteínas 14-3-3/metabolismo , Domínio Catalítico , Espalhamento a Baixo Ângulo , Difração de Raios X , Fosforilação , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo
4.
J Biol Chem ; 299(7): 104855, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224961

RESUMO

Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.


Assuntos
Proteínas 14-3-3 , Receptor alfa de Estrogênio , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ligantes , Tamoxifeno/farmacologia , Ligação Proteica/efeitos dos fármacos , Descoberta de Drogas , Antagonistas de Estrogênios/farmacologia
5.
Front Mol Biosci ; 9: 1016071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188227

RESUMO

Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.

6.
ACS Omega ; 7(38): 34632-34646, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188303

RESUMO

Increased FOXO3 nuclear localization is involved in neuroblastoma chemoresistance and tumor angiogenesis. Accordingly, FOXO3 inhibition is a promising strategy for boosting antitumor immune responses and suppressing FOXO3-mediated therapy resistance in cancer cells. However, no FOXO3 inhibitors are currently available for clinical use. Nevertheless, we have recently identified (4-propoxy)phenylpyrimidinylguanidine as a FOXO3 inhibitor in cancer cells in the low micromolar range. Here, we report the synthesis and structure-activity relationship study of a small library of its derivatives, some of which inhibit FOXO3-induced gene transcription in cancer cells in a submicromolar range and are thus 1 order of magnitude more potent than their parent compound. By NMR and molecular docking, we showed that these compounds differ in their interactions with the DNA-binding domain of FOXO3. These results may provide a foundation for further optimizing (4-propoxy)phenylpyrimidinylguanidine and developing therapeutics for inhibiting the activity of forkhead box (FOX) transcription factors and their interactions with other binding partners.

7.
Protein Sci ; 31(5): e4287, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481640

RESUMO

Transcription factor p53 protects cells against tumorigenesis when subjected to various cellular stresses. Under these conditions, p53 interacts with transcription factor Forkhead box O (FOXO) 4, thereby inducing cellular senescence by upregulating the transcription of senescence-associated protein p21. However, the structural details of this interaction remain unclear. Here, we characterize the interaction between p53 and FOXO4 by NMR, chemical cross-linking, and analytical ultracentrifugation. Our results reveal that the interaction between p53 TAD and the FOXO4 Forkhead domain is essential for the overall stability of the p53:FOXO4 complex. Furthermore, contacts involving the N-terminal segment of FOXO4, the C-terminal negative regulatory domain of p53 and the DNA-binding domains of both proteins stabilize the complex, whose formation blocks p53 binding to DNA but without affecting the DNA-binding properties of FOXO4. Therefore, our structural findings may help to understand the intertwined functions of p53 and FOXO4 in cellular homeostasis, longevity, and stress response.


Assuntos
Fatores de Transcrição Forkhead , Proteína Supressora de Tumor p53 , Proteínas de Ciclo Celular/metabolismo , DNA/química , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Ligação Proteica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Biophys J ; 121(7): 1299-1311, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35189105

RESUMO

Neural precursor cells expressed developmentally downregulated protein 4-2 (Nedd4-2), a homologous to the E6-AP carboxyl terminus (HECT) ubiquitin ligase, triggers the endocytosis and degradation of its downstream target molecules by regulating signal transduction through interactions with other targets, including 14-3-3 proteins. In our previous study, we found that 14-3-3 binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Here, we used time-resolved fluorescence intensity and anisotropy decay measurements, together with fluorescence quenching and mass spectrometry, to further characterize interactions between Nedd4-2 and 14-3-3 proteins. The results showed that 14-3-3 binding affects the emission properties of AEDANS-labeled WW3, WW4, and, to a lesser extent, WW2 domains, and reduces their mobility, but not those of the WW1 domain, which remains mobile. In contrast, 14-3-3 binding has the opposite effect on the active site of the HECT domain, which is more solvent exposed and mobile in the complexed form than in the apo form of Nedd4-2. Overall, our results suggest that steric hindrance of the WW3 and WW4 domains combined with conformational changes in the catalytic domain may account for the 14-3-3 binding-mediated regulation of Nedd4-2.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Células-Tronco Neurais , Proteínas 14-3-3/metabolismo , Domínio Catalítico , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Células-Tronco Neurais/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo , Domínios WW
9.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948191

RESUMO

Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer's, Parkinson's and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.


Assuntos
MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/fisiologia , Proteínas 14-3-3/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/ultraestrutura , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Oxirredução , Estresse Oxidativo , Fosforilação , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Commun Biol ; 4(1): 986, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413451

RESUMO

Death-associated protein kinase 2 (DAPK2) is a CaM-regulated Ser/Thr protein kinase, involved in apoptosis, autophagy, granulocyte differentiation and motility regulation, whose activity is controlled by autoinhibition, autophosphorylation, dimerization and interaction with scaffolding proteins 14-3-3. However, the structural basis of 14-3-3-mediated DAPK2 regulation remains unclear. Here, we structurally and biochemically characterize the full-length human DAPK2:14-3-3 complex by combining several biophysical techniques. The results from our X-ray crystallographic analysis revealed that Thr369 phosphorylation at the DAPK2 C terminus creates a high-affinity canonical mode III 14-3-3-binding motif, further enhanced by the diterpene glycoside Fusicoccin A. Moreover, concentration-dependent DAPK2 dimerization is disrupted by Ca2+/CaM binding and stabilized by 14-3-3 binding in solution, thereby protecting the DAPK2 inhibitory autophosphorylation site Ser318 against dephosphorylation and preventing Ca2+/CaM binding. Overall, our findings provide mechanistic insights into 14-3-3-mediated DAPK2 inhibition and highlight the potential of the DAPK2:14-3-3 complex as a target for anti-inflammatory therapies.


Assuntos
Proteínas 14-3-3/genética , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Dimerização , Regulação da Expressão Gênica , Humanos , Fosforilação
11.
Commun Biol ; 4(1): 899, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294877

RESUMO

Neural precursor cell expressed developmentally down-regulated 4 ligase (Nedd4-2) is an E3 ubiquitin ligase that targets proteins for ubiquitination and endocytosis, thereby regulating numerous ion channels, membrane receptors and tumor suppressors. Nedd4-2 activity is regulated by autoinhibition, calcium binding, oxidative stress, substrate binding, phosphorylation and 14-3-3 protein binding. However, the structural basis of 14-3-3-mediated Nedd4-2 regulation remains poorly understood. Here, we combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3. We demonstrate that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14-3-3 protein binding to Nedd4-2 and that 14-3-3 protein binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Overall, our findings provide the structural glimpse into the 14-3-3-mediated Nedd4-2 regulation and highlight the potential of the Nedd4-2:14-3-3 complex as a pharmacological target for Nedd4-2-associated diseases such as hypertension, epilepsy, kidney disease and cancer.


Assuntos
Proteínas 14-3-3/genética , Camundongos/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Domínios WW , Proteínas 14-3-3/metabolismo , Animais , Regulação para Baixo , Camundongos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Fosforilação , Ligação Proteica , Ubiquitinação
12.
J Mol Biol ; 433(19): 167174, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34302818

RESUMO

Expansion of the polyglutamine tract in the N terminus of Ataxin-1 is the main cause of the neurodegenerative disease, spinocerebellar ataxia type 1 (SCA1). However, the C-terminal part of the protein - including its AXH domain and a phosphorylation on residue serine 776 - also plays a crucial role in disease development. This phosphorylation event is known to be crucial for the interaction of Ataxin-1 with the 14-3-3 adaptor proteins and has been shown to indirectly contribute to Ataxin-1 stability. Here we show that 14-3-3 also has a direct anti-aggregation or "chaperone" effect on Ataxin-1. Furthermore, we provide structural and biophysical information revealing how phosphorylated S776 in the intrinsically disordered C terminus of Ataxin-1 mediates the cytoplasmic interaction with 14-3-3 proteins. Based on these findings, we propose that 14-3-3 exerts the observed chaperone effect by interfering with Ataxin-1 dimerization through its AXH domain, reducing further self-association. The chaperone effect is particularly important in the context of SCA1, as it was previously shown that a soluble form of mutant Ataxin-1 is the major driver of pathology.


Assuntos
Proteínas 14-3-3/metabolismo , Ataxina-1/química , Ataxina-1/metabolismo , Citoplasma/metabolismo , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Células HEK293 , Humanos , Fosforilação , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica
13.
FEBS J ; 288(6): 1918-1934, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32979285

RESUMO

Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.


Assuntos
Proteínas 14-3-3/metabolismo , Doença de Alzheimer/metabolismo , Multimerização Proteica , Proteínas tau/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sítios de Ligação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Serina/química , Serina/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas tau/química , Proteínas tau/genética
14.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233473

RESUMO

Phosphorylation by kinases governs many key cellular and extracellular processes, such as transcription, cell cycle progression, differentiation, secretion and apoptosis. Unsurprisingly, tight and precise kinase regulation is a prerequisite for normal cell functioning, whereas kinase dysregulation often leads to disease. Moreover, the functions of many kinases are regulated through protein-protein interactions, which in turn are mediated by phosphorylated motifs and often involve associations with the scaffolding and chaperon protein 14-3-3. Therefore, the aim of this review article is to provide an overview of the state of the art on 14-3-3-mediated kinase regulation, focusing on the most recent mechanistic insights into these important protein-protein interactions and discussing in detail both their structural aspects and functional consequences.


Assuntos
Proteínas 14-3-3/genética , Regulação Alostérica/genética , Proteínas Quinases/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Apoptose/genética , Humanos , Fosforilação/genética , Transdução de Sinais/genética
15.
ACS Chem Biol ; 15(11): 3060-3071, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33146997

RESUMO

Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates several key physiological and pathophysiological processes, and its dysregulation has been implicated in obesity, diabetes, and cancer. CaMKK2 is inhibited through phosphorylation in a process involving binding to the scaffolding 14-3-3 protein, which maintains CaMKK2 in the phosphorylation-mediated inhibited state. The previously reported structure of the N-terminal CaMKK2 14-3-3-binding motif bound to 14-3-3 suggested that the interaction between 14-3-3 and CaMKK2 could be stabilized by small-molecule compounds. Thus, we investigated the stabilization of interactions between CaMKK2 and 14-3-3γ by Fusicoccin A and other fusicoccanes-diterpene glycosides that bind at the interface between the 14-3-3 ligand binding groove and the 14-3-3 binding motif of the client protein. Our data reveal that two of five tested fusicoccanes considerably increase the binding of phosphopeptide representing the 14-3-3 binding motif of CaMKK2 to 14-3-3γ. Crystal structures of two ternary complexes suggest that the steric contacts between the C-terminal part of the CaMKK2 14-3-3 binding motif and the adjacent fusicoccane molecule are responsible for differences in stabilization potency between the study compounds. Moreover, our data also show that fusicoccanes enhance the binding affinity of phosphorylated full-length CaMKK2 to 14-3-3γ, which in turn slows down CaMKK2 dephosphorylation, thus keeping this protein in its phosphorylation-mediated inhibited state. Therefore, targeting the fusicoccin binding cavity of 14-3-3 by small-molecule compounds may offer an alternative strategy to suppress CaMKK2 activity by stabilizing its phosphorylation-mediated inhibited state.


Assuntos
Proteínas 14-3-3/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Glicosídeos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas 14-3-3/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Cristalografia por Raios X , Glicosídeos/química , Humanos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
16.
FEBS J ; 287(18): 3921-3924, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32852115

RESUMO

Steroidogenic acute regulatory protein (STARD1) is regulated by phosphorylation and 14-3-3 protein binding. STARD1 is a key player in cholesterol transport in mitochondria, and its regulation is not fully understood. Tugaeva et al. provide novel insights on the site-specific phosphorylation and subsequent 14-3-3-dependent regulation of STARD1 function. These results may help us understand the mechanism behind the regulation of steroidogenesis. Comment on: https://doi.org/10.1111/febs.15474.


Assuntos
Proteínas 14-3-3 , Fosfoproteínas , Proteínas 14-3-3/genética , Lipogênese , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica
17.
ACS Omega ; 5(10): 5380-5388, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201828

RESUMO

Inflammatory responses mediated by the transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) play key roles in immunity, autoimmune diseases, and cancer. NF-κB is directly regulated through protein-protein interactions, including those with IκB and 14-3-3 proteins. These two important regulatory proteins have been reported to interact with each other, although little is known about this interaction. We analyzed the inhibitor of nuclear factor kappa B α (IκBα)/14-3-3σ interaction via a peptide/protein-based approach. Structural data were acquired via X-ray crystallography, while binding affinities were measured with fluorescence polarization assays and time-resolved tryptophan fluorescence. A high-resolution crystal structure (1.13 Å) of the uncommon 14-3-3 interaction motif of IκBα (IκBαpS63) in a complex with 14-3-3σ was evaluated. This motif harbors a tryptophan that makes this crystal structure the first one with such a residue visible in the electron density at that position. We used this tryptophan to determine the binding affinity of the unlabeled IκBα peptide to 14-3-3 via tryptophan fluorescence decay measurements.

18.
FEBS J ; 287(16): 3494-3510, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31961068

RESUMO

Among all species, caspase-2 (C2) is the most evolutionarily conserved caspase required for effective initiation of apoptosis following death stimuli. C2 is activated through dimerization and autoproteolytic cleavage and inhibited through phosphorylation at Ser139 and Ser164 , within the linker between the caspase recruitment and p19 domains of the zymogen, followed by association with the adaptor protein 14-3-3, which maintains C2 in its immature form procaspase (proC2). However, the mechanism of 14-3-3-dependent inhibition of C2 activation remains unclear. Here, we report the structural characterization of the complex between proC2 and 14-3-3 by hydrogen/deuterium mass spectrometry and protein crystallography to determine the molecular basis for 14-3-3-mediated inhibition of C2 activation. Our data reveal that the 14-3-3 dimer interacts with proC2 not only through ligand-binding grooves but also through other regions outside the central channel, thus explaining the isoform-dependent specificity of 14-3-3 protein binding to proC2 and the substantially higher binding affinity of 14-3-3 protein to proC2 than to the doubly phosphorylated peptide. The formation of the complex between 14-3-3 protein and proC2 does not induce any large conformational change in proC2. Furthermore, 14-3-3 protein interacts with and masks both the nuclear localization sequence and the C-terminal region of the p12 domain of proC2 through transient interactions in which both the p19 and p12 domains of proC2 are not firmly docked onto the surface of 14-3-3. This masked region of p12 domain is involved in C2 dimerization. Therefore, 14-3-3 protein likely inhibits proC2 activation by blocking its dimerization surface. DATABASES: Structural data are available in the Protein Data Bank under the accession numbers 6SAD and 6S9K.


Assuntos
Proteínas 14-3-3/química , Caspase 2/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Precursores de Proteínas/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sítios de Ligação/genética , Caspase 2/genética , Caspase 2/metabolismo , Cristalografia por Raios X , Humanos , Mutação , Fosforilação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
19.
FEBS J ; 287(8): 1626-1644, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31623019

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase 5, which mediates various stress signals including oxidative stress. The catalytic activity of ASK1 is tightly controlled by oligomerization and binding of several cofactors. Among these cofactors, thioredoxin stands out as the most important ASK1 inhibitor, but only the reduced form of thioredoxin inhibits ASK1 by direct binding to its N-terminal domain. In addition, oxidation-driven thioredoxin dissociation is the key event in oxidative stress-mediated ASK1 activation. However, the structural mechanism of ASK1 regulation by thioredoxin remains unknown. Here, we report the characterization of the ASK1 domain responsible for thioredoxin binding and its complex using NMR spectroscopy and chemical cross-linking, thus providing the molecular basis for ASK1: thioredoxin complex dissociation under oxidative stress conditions. Our data reveal that the N-terminal domain of ASK1 adopts a fold resembling the thioredoxin structure while retaining substantial conformational plasticity at the thioredoxin-binding interface. Although oxidative stress induces relatively moderate structural changes in thioredoxin, the formation of intramolecular disulfide bridges leads to a considerable conformational rearrangement of the thioredoxin-binding interface on ASK1. Moreover, the cysteine residue at position 250 of ASK1 is the key element of this molecular switch. Finally, our results show that the redox-active site of thioredoxin is directly involved in ASK1 binding that is modulated by oxidative stress, thereby identifying a key target for the structure-based drug design.


Assuntos
Apoptose , MAP Quinase Quinase Quinase 5/metabolismo , Estresse Oxidativo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Sítios de Ligação , Humanos , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Inibidores de Proteínas Quinases/farmacologia
20.
Medchemcomm ; 10(10): 1796-1802, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31814953

RESUMO

Protein-protein interactions (PPIs) are at the core of regulation mechanisms in biological systems and consequently became an attractive target for therapeutic intervention. PPIs involving the adapter protein 14-3-3 are representative examples given the broad range of partner proteins forming a complex with one of its seven human isoforms. Given the challenges represented by the nature of these interactions, fragment-based approaches offer a valid alternative for the development of PPI modulators. After having assembled a fragment set tailored on PPIs' modulation, we started a screening campaign on the sigma isoform of 14-3-3 adapter proteins. Through the use of both mono- and bi-dimensional nuclear magnetic resonance spectroscopy measurements, coupled with differential scanning fluorimetry, three fragment hits were identified. These molecules bind the protein at two different regions distant from the usual binding groove highlighting new possibilities for selective modulation of 14-3-3 complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...