Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 7(24): 7407-7417, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37487020

RESUMO

Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.


Assuntos
Células-Tronco Hematopoéticas , Ferro , Humanos , Ciclopirox/farmacologia , Ciclopirox/metabolismo , Ferro/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Etanolaminas/metabolismo , Etanolaminas/farmacologia
2.
Blood Adv ; 7(18): 5382-5395, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37505194

RESUMO

Acute myeloid leukemia (AML) is initiated and propagated by leukemia stem cells (LSCs), a self-renewing population of leukemia cells responsible for therapy resistance. Hence, there is an urgent need to identify new therapeutic opportunities targeting LSCs. Here, we performed an in vivo CRISPR knockout screen to identify potential therapeutic targets by interrogating cell surface dependencies of LSCs. The facilitated glucose transporter type 1 (GLUT1) emerged as a critical in vivo metabolic dependency for LSCs in a murine MLL::AF9-driven model of AML. GLUT1 disruption by genetic ablation or pharmacological inhibition led to suppression of leukemia progression and improved survival of mice that received transplantation with LSCs. Metabolic profiling revealed that Glut1 inhibition suppressed glycolysis, decreased levels of tricarboxylic acid cycle intermediates and increased the levels of amino acids. This metabolic reprogramming was accompanied by an increase in autophagic activity and apoptosis. Moreover, Glut1 disruption caused transcriptional, morphological, and immunophenotypic changes, consistent with differentiation of AML cells. Notably, dual inhibition of GLUT1 and oxidative phosphorylation (OXPHOS) exhibited synergistic antileukemic effects in the majority of tested primary AML patient samples through restraining of their metabolic plasticity. In particular, RUNX1-mutated primary leukemia cells displayed striking sensitivity to the combination treatment compared with normal CD34+ bone marrow and cord blood cells. Collectively, our study reveals a GLUT1 dependency of murine LSCs in the bone marrow microenvironment and demonstrates that dual inhibition of GLUT1 and OXPHOS is a promising therapeutic approach for AML.


Assuntos
Leucemia Mieloide Aguda , Fosforilação Oxidativa , Animais , Camundongos , Apoptose , Medula Óssea/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Leucemia Mieloide Aguda/genética , Microambiente Tumoral
3.
Brain Commun ; 5(3): fcad158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274831

RESUMO

Frontotemporal dementia (FTD) is the second most prevalent type of early-onset dementia and up to 40% of cases are familial forms. One of the genes mutated in patients is CHMP2B, which encodes a protein found in a complex important for maturation of late endosomes, an essential process for recycling membrane proteins through the endolysosomal system. Here, we have generated a CHMP2B-mutated human embryonic stem cell line using genome editing with the purpose to create a human in vitro FTD disease model. To date, most studies have focused on neuronal alterations; however, we present a new co-culture system in which neurons and astrocytes are independently generated from human embryonic stem cells and combined in co-cultures. With this approach, we have identified alterations in the endolysosomal system of FTD astrocytes, a higher capacity of astrocytes to uptake and respond to glutamate, and a neuronal network hyperactivity as well as excessive synchronization. Overall, our data indicates that astrocyte alterations precede neuronal impairments and could potentially trigger neuronal network changes, indicating the important and specific role of astrocytes in disease development.

4.
Sci Rep ; 12(1): 18687, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333335

RESUMO

Achieving CRISPR Cas9-based manipulation of mitochondrial DNA (mtDNA) has been a long-standing goal and would be of great relevance for disease modeling and for clinical applications. In this project, we aimed to deliver Cas9 into the mitochondria of human cells and analyzed Cas9-induced mtDNA cleavage and measured the resulting mtDNA depletion with multiplexed qPCR. In initial experiments, we found that measuring subtle effects on mtDNA copy numbers is challenging because of high biological variability, and detected no significant Cas9-caused mtDNA degradation. To overcome the challenge of being able to detect Cas9 activity on mtDNA, we delivered cytosine base editor Cas9-BE3 to mitochondria and measured its effect (C → T mutations) on mtDNA. Unlike regular Cas9-cutting, this leaves a permanent mark on mtDNA that can be detected with amplicon sequencing, even if the efficiency is low. We detected low levels of C → T mutations in cells that were exposed to mitochondrially targeted Cas9-BE3, but, surprisingly, these occurred regardless of whether a guide RNA (gRNA) specific to the targeted site, or non-targeting gRNA was used. This unspecific off-target activity shows that Cas9-BE3 can technically edit mtDNA, but also strongly indicates that gRNA import to mitochondria was not successful. Going forward mitochondria-targeted Cas9 base editors will be a useful tool for validating successful gRNA delivery to mitochondria without the ambiguity of approaches that rely on quantifying mtDNA copy numbers.


Assuntos
DNA Mitocondrial , RNA Guia de Cinetoplastídeos , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , DNA Mitocondrial/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo
5.
Front Cell Dev Biol ; 10: 1039636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313554

RESUMO

Primitive, neonatal and adult erythroid cells have been previously shown to have an active pentose phosphate pathway (PPP) that fuels various processes. However, it is unclear whether the PPP plays a role during the emergence of erythroid progenitors from hemogenic endothelium (HE). In this study, we explored PPP and its genetic regulation in developmental erythropoiesis. We induced hematopoietic differentiation of human induced pluripotent stem cells (hiPSCs) to obtain HE cells. These cells were treated with lentiviral vectors harboring shRNAs against FOXO1, or with inhibitors against the PPP, NRF2 or AKT. Erythroid differentiation, proliferation and frequency were evaluated by flow cytometry. Gene expression was assessed by qPCR or by analysis of available RNAseq data. We found that PPP is indispensable for the erythroid differentiation of HE cells and it partially fuels nucleotide biosynthesis. Moreover, we showed that NRF2 and AKT are essential, while FOXO1 is detrimental, for HE-derived erythroid differentiation. In contrast, blocking FOXO1 expression did not affect erythroid differentiation of cord-blood HSPCs. Mechanistically, FOXO1 inhibition in HE cells led to an increase in the non-oxidative branch of the PPP. During developmental erythropoiesis, the gradual decrease in FOXO1 activates the PPP and fuels nucleotide biosynthesis and cell proliferation.

6.
EMBO Rep ; 23(2): e54384, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34914165

RESUMO

During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial-to-hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis-mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS-mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.


Assuntos
Hemangioblastos , Diferenciação Celular , Linhagem da Célula/genética , Feminino , Hemangioblastos/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Gravidez , Piruvatos/metabolismo
7.
Sci Rep ; 11(1): 17589, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475502

RESUMO

During hematopoietic development, definitive hematopoietic cells are derived from hemogenic endothelial (HE) cells through a process known as endothelial to hematopoietic transition (EHT). During EHT, transitioning cells proliferate and undergo progressive changes in gene expression culminating in the new cell identity with corresponding changes in function, phenotype and morphology. However, the metabolic pathways fueling this transition remain unclear. We show here that glutamine is a crucial regulator of EHT and a rate limiting metabolite in the hematopoietic differentiation of HE cells. Intriguingly, different hematopoietic lineages require distinct derivatives of glutamine. While both derivatives, α-ketoglutarate and nucleotides, are required for early erythroid differentiation of HE during glutamine deprivation, lymphoid differentiation relies on α-ketoglutarate alone. Furthermore, treatment of HE cells with α-ketoglutarate in glutamine-free conditions pushes their differentiation towards lymphoid lineages both in vitro and in vivo, following transplantation into NSG mice. Thus, we report an essential role for glutamine metabolism during EHT, regulating both the emergence and the specification of hematopoietic cells through its various derivatives.


Assuntos
Glutamina/metabolismo , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Hematopoese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID
8.
Cell Rep ; 34(5): 108723, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535038

RESUMO

The metabolic changes controlling the stepwise differentiation of hematopoietic stem and progenitor cells (HSPCs) to mature erythrocytes are poorly understood. Here, we show that HSPC development to an erythroid-committed proerythroblast results in augmented glutaminolysis, generating alpha-ketoglutarate (αKG) and driving mitochondrial oxidative phosphorylation (OXPHOS). However, sequential late-stage erythropoiesis is dependent on decreasing αKG-driven OXPHOS, and we find that isocitrate dehydrogenase 1 (IDH1) plays a central role in this process. IDH1 downregulation augments mitochondrial oxidation of αKG and inhibits reticulocyte generation. Furthermore, IDH1 knockdown results in the generation of multinucleated erythroblasts, a morphological abnormality characteristic of myelodysplastic syndrome and congenital dyserythropoietic anemia. We identify vitamin C homeostasis as a critical regulator of ineffective erythropoiesis; oxidized ascorbate increases mitochondrial superoxide and significantly exacerbates the abnormal erythroblast phenotype of IDH1-downregulated progenitors, whereas vitamin C, scavenging reactive oxygen species (ROS) and reprogramming mitochondrial metabolism, rescues erythropoiesis. Thus, an IDH1-vitamin C crosstalk controls terminal steps of human erythroid differentiation.


Assuntos
Ácido Ascórbico/metabolismo , Eritropoese/genética , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Diferenciação Celular , Humanos
9.
Leukemia ; 34(12): 3439, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32665696

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Leukemia ; 34(12): 3323-3337, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32555370

RESUMO

The fate options of hematopoietic stem cells (HSCs) include self-renewal, differentiation, migration, and apoptosis. HSCs self-renewal divisions in stem cells are required for rapid regeneration during tissue damage and stress, but how precisely intracellular calcium signals are regulated to maintain fate options in normal hematopoiesis is unclear. S100A6 knockout (KO) HSCs have reduced total cell numbers in the HSC compartment, decreased myeloid output, and increased apoptotic HSC numbers in steady state. S100A6KO HSCs had impaired self-renewal and regenerative capacity, not responding to 5-Fluorouracil. Our transcriptomic and proteomic profiling suggested that S100A6 is a critical HSC regulator. Intriguingly, S100A6KO HSCs showed decreased levels of phosphorylated Akt (p-Akt) and Hsp90, with an impairment of mitochondrial respiratory capacity and a reduction of mitochondrial calcium levels. We showed that S100A6 regulates intracellular and mitochondria calcium buffering of HSC upon cytokine stimulation and have demonstrated that Akt activator SC79 reverts the levels of intracellular and mitochondrial calcium in HSC. Hematopoietic colony-forming activity and the Hsp90 activity of S100A6KO are restored through activation of the Akt pathway. We show that p-Akt is the prime downstream mechanism of S100A6 in the regulation of HSC self-renewal by specifically governing mitochondrial metabolic function and Hsp90 protein quality.

11.
Nat Metab ; 1(7): 717-730, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-32373781

RESUMO

The susceptibility of CD4 T cells to human immunodeficiency virus 1 (HIV-1) infection is regulated by glucose and glutamine metabolism, but the relative contributions of these nutrients to infection are not known. Here we show that glutaminolysis is the major pathway fuelling the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in T-cell receptor-stimulated naïve, as well as memory CD4, subsets and is required for optimal HIV-1 infection. Under conditions of attenuated glutaminolysis, the α-ketoglutarate (α-KG) TCA rescues early steps in infection; exogenous α-KG promotes HIV-1 reverse transcription, rendering both naïve and memory cells more sensitive to infection. Blocking the glycolytic flux of pyruvate to lactate results in altered glucose carbon allocation to TCA and pentose phosphate pathway intermediates, an increase in OXPHOS and augmented HIV-1 reverse transcription. Moreover, HIV-1 infection is significantly higher in CD4 T cells selected on the basis of high mitochondrial biomass and OXPHOS activity. Therefore, the OXPHOS/aerobic glycolysis balance is a major regulator of HIV-1 infection in CD4 T lymphocytes.


Assuntos
Linfócitos T CD4-Positivos/virologia , Ciclo do Ácido Cítrico , Glucose/metabolismo , Glutamina/metabolismo , HIV-1/patogenicidade , Linfócitos T CD4-Positivos/imunologia , Humanos , Ativação Linfocitária
12.
Curr Opin Hematol ; 23(4): 311-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135980

RESUMO

PURPOSE OF REVIEW: Hematopoietic stem cells (HSCs) possess two fundamental characteristics, the capacity for self-renewal and the sustained production of all blood cell lineages. The fine balance between HSC expansion and lineage specification is dynamically regulated by the interplay between external and internal stimuli. This review introduces recent advances in the roles played by the stem cell niche, regulatory transcriptional networks, and metabolic pathways in governing HSC self-renewal, commitment, and lineage differentiation. We will further focus on discoveries made by studying hematopoiesis at single-cell resolution. RECENT FINDINGS: HSCs require the support of an interactive milieu with their physical position within the perivascular niche dynamically regulating HSC behavior. In these microenvironments, transcription factor networks and nutrient-mediated regulation of energy resources, signaling pathways, and epigenetic status govern HSC quiescence and differentiation. Once HSCs begin their lineage specification, single-cell analyses show that they do not become oligopotent but rather, differentiate directly into committed unipotent progenitors. SUMMARY: The diversity of transcriptional networks and metabolic pathways in HSCs and their downstream progeny allows a high level of plasticity in blood differentiation. The intricate interactions between these pathways, within the perivascular niche, broaden the specification of HSCs in pathological and stressed conditions.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Comunicação Celular , Diferenciação Celular/genética , Linhagem da Célula/genética , Autorrenovação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Transdução de Sinais , Análise de Célula Única , Nicho de Células-Tronco , Fatores de Transcrição/metabolismo
13.
Sci Rep ; 6: 24129, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27067254

RESUMO

CD4 and CD8 T lymphocyte activation requires the generation of sufficient energy to support new biosynthetic demands. Following T cell receptor (TCR) engagement, these requirements are met by an increased glycolysis, due, at least in part, to induction of the Glut1 glucose transporter. As Glut1 is upregulated on tumor cells in response to hypoxia, we assessed whether surface Glut1 levels regulate the antigen responsiveness of human T lymphocytes in both hypoxic and atmospheric oxygen conditions. Notably, Glut1 upregulation in response to TCR stimulation was significantly higher in T lymphocytes activated under hypoxic as compared to atmospheric oxygen conditions. Furthermore, TCR-stimulated human T lymphocytes sorted on the basis of Glut1-Lo and Glut1-Hi profiles maintained distinct characteristics, irrespective of the oxygen tension. While T cells activated in hypoxia divided less than those activated in atmospheric oxygen, Glut1-Hi lymphocytes exhibited increased effector phenotype acquisition, augmented proliferation, and an inverted CD4/CD8 ratio in both oxygen conditions. Moreover, Glut1-Hi T lymphocytes exhibited a significantly enhanced ability to produce IFN-γ and this secretion potential was completely dependent on continued glycolysis. Thus, Glut1 surface levels identify human T lymphocytes with distinct effector functions in both hypoxic and atmospheric oxygen tensions.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Transportador de Glucose Tipo 1/análise , Subpopulações de Linfócitos T/imunologia , Aerobiose , Anaerobiose , Proliferação de Células , Glicólise , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo
14.
Curr Opin Hematol ; 23(3): 198-205, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26871253

RESUMO

PURPOSE OF REVIEW: Hematopoietic stem cell (HSC) renewal and lineage differentiation are finely tuned processes, regulated by cytokines, transcription factors and cell-cell contacts. However, recent studies have shown that fuel utilization also conditions HSC fate. This review focuses on our current understanding of the metabolic pathways that govern HSC self-renewal, commitment and specification to the erythroid lineage. RECENT FINDINGS: HSCs reside in a hypoxic bone marrow niche that favors anaerobic glycolysis. Although this metabolic pathway is required for stem cell maintenance, other pathways also play critical roles. Fatty acid oxidation preserves HSC self-renewal by promoting asymmetric division, whereas oxidative phosphorylation induces lineage commitment. Committed erythroid progenitors support the production of 2.4 million erythrocytes per second in human adults via a synchronized regulation of iron, amino acid and glucose metabolism. Iron is indispensable for heme biosynthesis in erythroblasts; a process finely coordinated by at least two hormones, hepcidin and erythroferrone, together with multiple cell surface iron transporters. Furthermore, hemoglobin production is promoted by amino acid-induced mTOR signaling. Erythropoiesis is also strictly dependent on glutamine metabolism; under conditions where glutaminolysis is inhibited, erythropoietin-signaled progenitors are diverted to a myelomonocytic fate. Indeed, the utilization of both glutamine and glucose in de-novo nucleotide biosynthesis is a sine qua non for erythroid differentiation. SUMMARY: Diverse metabolic networks function in concert with transcriptional, translational and epigenetic programs to regulate HSC potential and orient physiological as well as pathological erythroid differentiation.


Assuntos
Células Eritroides/citologia , Células Eritroides/metabolismo , Eritropoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos
15.
Sci Signal ; 8(396): ra97, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26420908

RESUMO

T cell activation requires that the cell meet increased energetic and biosynthetic demands. We showed that exogenous nutrient availability regulated the differentiation of naïve CD4(+) T cells into distinct subsets. Activation of naïve CD4(+) T cells under conditions of glutamine deprivation resulted in their differentiation into Foxp3(+) (forkhead box P3-positive) regulatory T (Treg) cells, which had suppressor function in vivo. Moreover, glutamine-deprived CD4(+) T cells that were activated in the presence of cytokines that normally induce the generation of T helper 1 (TH1) cells instead differentiated into Foxp3(+) Treg cells. We found that α-ketoglutarate (αKG), the glutamine-derived metabolite that enters into the mitochondrial citric acid cycle, acted as a metabolic regulator of CD4(+) T cell differentiation. Activation of glutamine-deprived naïve CD4(+) T cells in the presence of a cell-permeable αKG analog increased the expression of the gene encoding the TH1 cell-associated transcription factor Tbet and resulted in their differentiation into TH1 cells, concomitant with stimulation of mammalian target of rapamycin complex 1 (mTORC1) signaling. Together, these data suggest that a decrease in the intracellular amount of αKG, caused by the limited availability of extracellular glutamine, shifts the balance between the generation of TH1 and Treg cells toward that of a Treg phenotype.


Assuntos
Diferenciação Celular/imunologia , Glutamina/imunologia , Ácidos Cetoglutáricos/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Linfócitos T Reguladores/metabolismo , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo , Células Th1/metabolismo
16.
Cell Stem Cell ; 15(2): 169-84, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24953180

RESUMO

The metabolic state of quiescent hematopoietic stem cells (HSCs) is an important regulator of self-renewal, but it is unclear whether or how metabolic parameters contribute to HSC lineage specification and commitment. Here, we show that the commitment of human and murine HSCs to the erythroid lineage is dependent upon glutamine metabolism. HSCs require the ASCT2 glutamine transporter and active glutamine metabolism for erythroid specification. Blocking this pathway diverts EPO-stimulated HSCs to differentiate into myelomonocytic fates, altering in vivo HSC responses and erythroid commitment under stress conditions such as hemolytic anemia. Mechanistically, erythroid specification of HSCs requires glutamine-dependent de novo nucleotide biosynthesis. Exogenous nucleosides rescue erythroid commitment of human HSCs under conditions of limited glutamine catabolism, and glucose-stimulated nucleotide biosynthesis further enhances erythroid specification. Thus, the availability of glutamine and glucose to provide fuel for nucleotide biosynthesis regulates HSC lineage commitment under conditions of metabolic stress.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Linhagem da Célula , Regulação da Expressão Gênica , Glucose/metabolismo , Glutamina/metabolismo , Células-Tronco Hematopoéticas/citologia , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD34/metabolismo , Transporte Biológico , Diferenciação Celular , Cromatografia Líquida , Eritrócitos/citologia , Glicólise , Proteínas de Fluorescência Verde/metabolismo , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor , RNA Interferente Pequeno/metabolismo
17.
Proc Natl Acad Sci U S A ; 109(7): 2549-54, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308487

RESUMO

Cell cycle entry is commonly considered to positively regulate HIV-1 infection of CD4 T cells, raising the question as to how quiescent lymphocytes, representing a large portion of the viral reservoir, are infected in vivo. Factors such as the homeostatic cytokine IL-7 have been shown to render quiescent T cells permissive to HIV-1 infection, presumably by transiently stimulating their entry into the cell cycle. However, we show here that at physiological oxygen (O(2)) levels (2-5% O(2) tension in lymphoid organs), IL-7 stimulation generates an environment permissive to HIV-1 infection, despite a significantly attenuated level of cell cycle entry. We identify the IL-7-induced increase in Glut1 expression, resulting in augmented glucose uptake, as a key factor in rendering these T lymphocytes susceptible to HIV-1 infection. HIV-1 infection of human T cells is abrogated either by impairment of Glut1 signal transduction or by siRNA-mediated Glut1 down-regulation. Consistent with this, we show that the susceptibility of human thymocyte subsets to HIV-1 infection correlates with Glut1 expression; single-round infection is markedly higher in the Glut1-expressing double-positive thymocyte population than in any of the Glut1-negative subsets. Thus, our studies reveal the Glut1-mediated metabolic pathway as a critical regulator of HIV-1 infection in human CD4 T cells and thymocytes.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Infecções por HIV/fisiopatologia , Adulto , Transporte Biológico , Linfócitos T CD4-Positivos/metabolismo , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...