Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Salud Publica Mex ; 65(2 mar-abr): 114-126, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38060864

RESUMO

OBJECTIVE: To provide primary evidence of Trypanosoma cruzi landscape genetics in the Mexican Neotropics. MATERIALS AND METHODS: Trypanosoma cruzi and discrete typing units (DTU) prevalence were analyzed in landscape communities of vectors, wildlife, livestock, pets, and sympatric human populations using endpoint PCR and sequencing of all relevant amplicons from mitochondrial (kDNA) and nuclear (ME, 18S, 24Sα) gene markers. RESULTS: Although 98% of the infected sample-set (N=2 963) contained single or mixed infections of DTUI (TcI, 96.2%) and TcVI (22.6%), TcIV and TcII were also identified. Sensitivity of individual markers varied and was dependent on host taxon; kDNA, ME and 18S combined identified 95% of infections. ME genotyped 90% of vector infections, but 60% of mammals (36% wildlife), while neither 18S nor 24Sα typed more than 20% of mammal infections. CONCLUSION: Available gene fragments to identify or genotype T. cruzi are not universally sensitive for all landscape parasite populations, highlighting important T. cruzi heteroge- neity among mammal reservoir taxa and triatomine species.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/genética , Animais Selvagens/genética , Doença de Chagas/epidemiologia , Doença de Chagas/veterinária , Doença de Chagas/parasitologia , Gado/genética , DNA de Cinetoplasto/genética , Mamíferos/genética , Mamíferos/parasitologia , Genótipo
2.
PLoS One ; 8(11): e80058, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278239

RESUMO

Exercise training is widely used for neurorehabilitation of Parkinson's disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [(14)C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases in rCBF in the medial prefrontal cortex (cingulate, prelimbic, infralimbic). Our results in this PD rat model uniquely highlight the breadth of functional reorganizations in motor and limbic circuits following lesion and long-term, aerobic exercise, and provide a framework for understanding the neural substrates underlying exercise-based neurorehabilitation.


Assuntos
Modelos Animais de Doenças , Sistema Límbico/fisiopatologia , Córtex Motor/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Condicionamento Físico Animal , Animais , Peso Corporal , Sistema Límbico/enzimologia , Masculino , Atividade Motora , Córtex Motor/enzimologia , Transtornos Parkinsonianos/enzimologia , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
3.
PLoS One ; 8(3): e59138, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527114

RESUMO

Repeated water avoidance stress (WAS) induces sustained visceral hyperalgesia (VH) in rats measured as enhanced visceromotor response to colorectal distension (CRD). This model incorporates two characteristic features of human irritable bowel syndrome (IBS), VH and a prominent role of stress in the onset and exacerbation of IBS symptoms. Little is known regarding central mechanisms underlying the stress-induced VH. Here, we applied an autoradiographic perfusion method to map regional and network-level neural correlates of VH. Adult male rats were exposed to WAS or sham treatment for 1 hour/day for 10 days. The visceromotor response was measured before and after the treatment. Cerebral blood flow (CBF) mapping was performed by intravenous injection of radiotracer ([(14)C]-iodoantipyrine) while the rat was receiving a 60-mmHg CRD or no distension. Regional CBF-related tissue radioactivity was quantified in autoradiographic images of brain slices and analyzed in 3-dimensionally reconstructed brains with statistical parametric mapping. Compared to sham rats, stressed rats showed VH in association with greater CRD-evoked activation in the insular cortex, amygdala, and hypothalamus, but reduced activation in the prelimbic area (PrL) of prefrontal cortex. We constrained results of seed correlation analysis by known structural connectivity of the PrL to generate structurally linked functional connectivity (SLFC) of the PrL. Dramatic differences in the SLFC of PrL were noted between stressed and sham rats under distension. In particular, sham rats showed negative correlation between the PrL and amygdala, which was absent in stressed rats. The altered pattern of functional brain activation is in general agreement with that observed in IBS patients in human brain imaging studies, providing further support for the face and construct validity of the WAS model for IBS. The absence of prefrontal cortex-amygdala anticorrelation in stressed rats is consistent with the notion that impaired corticolimbic modulation acts as a central mechanism underlying stress-induced VH.


Assuntos
Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Sistema Límbico/fisiologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico , Animais , Encéfalo/fisiologia , Colo/fisiologia , Masculino , Atividade Motora , Ratos , Reto/fisiologia
4.
Neuroimage ; 59(4): 4168-88, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22155030

RESUMO

Clinical and preclinical evidence suggests anxiolytic-like efficacy of pregabalin (PGB, Lyrica). However, its mechanism of action remains under investigation. The current study applied [(14)C]-iodoantipyrine cerebral blood flow (CBF) mapping to examine the effect of PGB on neural substrates underlying unconditioned fear in a rat model of footshock-induced fear. Regional CBF (rCBF) was analyzed by statistical parametric mapping. Functional connectivity and graph theoretical analysis were used to investigate how footshock and PGB affect brain activation at the network level. Pregabalin significantly attenuated footshock-induced ultrasonic vocalization, but showed no significant effect on freezing behavior. Footshock compared to no-shock controls elicited significant increases in rCBF in limbic/paralimbic regions implicated in the processing of unconditioned fear and ultrasonic vocalization, including the amygdala, hypothalamus, lateral septum, dorsal periaqueductal gray, the anterior insular (aINS) and medial prefrontal cortex (mPFC). The activation pattern was similar in vehicle- and PGB-treated subjects, with PGB significantly attenuating activation in the amygdala, hypothalamus, and aINS. The vehicle/no-shock group showed strong, positive intra-structural correlations within the cortex, hypothalamus, amygdala, thalamus, and brainstem. The cortex was negatively correlated with the hypothalamus and brainstem. Footshock reduced the total number of significant correlations, but induced greater intra-cortical connectivity of the aINS and mPFC, and new positive correlations between the hypothalamus and amygdala. In no-shock controls, PGB significantly reduced the positive intra-structural correlations within the cortex and amygdala, as well as the negative cortico-subcortical correlations. Following footshocks, PGB disrupted both the network recruitment of aINS and mPFC, and the positive hypothalamic-amygdaloid correlations. Our findings suggest that PGB may exert anxiolytic effect by attenuating cortico-cortical and cortico-subcortical communication and inhibiting network recruitment of the aINS, mPFC, amygdala, and hypothalamus following a fear-inducing stimulus. Functional brain mapping in rodents may provide new endpoints for preclinical evaluation of anxiolytic drug candidates with potentially improved translational power compared to behavioral measurements alone.


Assuntos
Ansiolíticos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Ácido gama-Aminobutírico/análogos & derivados , Animais , Autorradiografia , Mapeamento Encefálico , Masculino , Pregabalina , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...