Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 283(9): 5355-63, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18056713

RESUMO

To investigate the interaction of the insulin-like growth factor (IGF) ligands with the insulin-like growth factor type 1 receptor (IGF-1R), we have generated two soluble variants of the IGF-1R. We have recombinantly expressed the ectodomain of IGF-1R or fused this domain to the constant domain from the Fc fragment of mouse immunoglobulin. The ligand binding properties of these soluble IGF-1Rs for IGF-I and IGF-II were investigated using conventional ligand competition assays and BIAcore biosensor technology. In ligand competition assays, the soluble IGF-1Rs both bound IGF-I with similar affinities and a 5-fold lower affinity than that seen for the wild type receptor. In addition, both soluble receptors bound IGF-II with similar affinities to the wild type receptor. BIAcore analyses showed that both soluble IGF-1Rs exhibited similar ligand-specific association and dissociation rates for IGF-I and for IGF-II. The soluble IGF-1R proteins both exhibited negative cooperativity for IGF-I, IGF-II, and the 24-60 antibody, which binds to the IGF-1R cysteine-rich domain. We conclude that the addition of the self-associating Fc domain to the IGF-1R ectodomain does not affect ligand binding affinity, which is in contrast to the soluble ectodomain of the IR. This study highlights some significant differences in ligand binding modes between the IGF-1R and the insulin receptor, which may ultimately contribute to the different biological activities conferred by the two receptors.


Assuntos
Regiões Constantes de Imunoglobulina/química , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like I/química , Modelos Químicos , Receptor IGF Tipo 1/química , Animais , Humanos , Regiões Constantes de Imunoglobulina/genética , Regiões Constantes de Imunoglobulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Ligantes , Camundongos , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ressonância de Plasmônio de Superfície
2.
Cloning Stem Cells ; 7(4): 265-71, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16390262

RESUMO

Nuclear reprogramming by somatic cell nuclear transfer (SCNT) provides a practical approach for generating autologous pluripotent cells from adult somatic cells. It has been shown that murine somatic cells can also be reprogrammed to a pluripotent-like state by fusion with embryonic stem (ES) cells. Typically, the first step in SCNT involves enucleation of the recipient cell. However, recent evidence suggests that enucleated diploid ES cells may lack reprogramming capabilities. Here we have developed methods whereby larger tetraploid ES cells are first generated by fusion of two mouse ES cell lines transfected with plasmids carrying different antibiotic-resistance cassettes, followed by double antibiotic selection. Tetraploid ES cells grown on tissue culture disks or wells can be efficiently enucleated (up to 99%) using a combination of cytochalasin B treatment and centrifugation, with cytoplasts generated from these cells larger than those obtained from normal diploid ES cells. Also, we show that the enucleation rate is dependent on centrifugation time and cell ploidy. Further, we demonstrate that normal diploid ES cells can be fused to tetraploid ES cells to form heterokaryons, and that selective differential centrifugation conditions can be applied where the tetraploid nucleus is removed while the diploid donor nucleus is retained. This technology opens new avenues for generating autologous, diploid pluripotent cells, and provides a dynamic model for studying nuclear reprogramming in ES cells.


Assuntos
Clonagem de Organismos/métodos , Diploide , Embrião de Mamíferos/fisiologia , Técnicas Genéticas , Técnicas de Transferência Nuclear , Células-Tronco Pluripotentes/fisiologia , Poliploidia , Animais , Fusão Celular , Núcleo Celular/fisiologia , Células Cultivadas , Embrião de Mamíferos/citologia , Camundongos , Células-Tronco Pluripotentes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA