Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(43): 7226-7241, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37699718

RESUMO

The insulin/IGF-1 signaling (IIS) regulates a wide range of biological processes, including aging and lifespan, and has also been implicated in the pathogenesis of Alzheimer's disease (AD). We and others have reported that reduced signaling by genetic ablation of the molecules involved in IIS (e.g., insulin receptor substrate 2 [IRS-2]) markedly mitigates amyloid plaque formation in the brains of mouse models of AD, although the molecular underpinnings of the amelioration remain unsolved. Here, we revealed, by a transcriptomic analysis of the male murine cerebral cortices, that the expression of genes encoding extracellular matrix (ECM) was significantly upregulated by the loss of IRS-2. Insulin signaling activity negatively regulated the phosphorylation of Smad2 and Smad3 in the brain, and suppressed TGF-ß/Smad-dependent expression of a subset of ECM genes in brain-derived cells. The ECM proteins inhibited Aß fibril formation in vitro, and IRS-2 deficiency suppressed the aggregation process of Aß in the brains of male APP transgenic mice as revealed by injection of aggregation seeds in vivo Our results propose a novel mechanism in AD pathophysiology whereby IIS modifies Aß aggregation and amyloid pathology by altering the expression of ECM genes in the brain.SIGNIFICANCE STATEMENT The insulin/IGF-1 signaling (IIS) has been recognized as a regulator of aging, a leading risk factor for the onset of Alzheimer's disease (AD). In AD mouse models, genetic deletion of key IIS molecules markedly reduces the amyloid plaque formation in the brain, although the molecular underpinnings of this amelioration remain elusive. We found that the deficiency of insulin receptor substrate 2 leads to an increase in the expression of various extracellular matrices (ECMs) in the brain, potentially through TGF-ß/Smad signaling. Furthermore, some of those ECMs exhibited the potential to inhibit amyloid plaque accumulation by disrupting the formation of Aß fibrils. This study presents a novel mechanism by which IIS regulates Aß accumulation, which may involve altered brain ECM expression.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Animais , Doença de Alzheimer/metabolismo , Insulina , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
2.
Neurobiol Dis ; 159: 105510, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537327

RESUMO

Insulin signaling has been implicated in the metabolism as well as aging and longevity. Type 2 diabetes mellitus and its core pathology, insulin resistance, has also been implicated in the development of Alzheimer's disease (AD) and amyloid-ß deposition in humans. By contrast, genetic ablation of the insulin/IGF-1 signaling (IIS) pathway components, e.g. insulin receptor substrate (IRS)-2, has been documented to suppress amyloid-ß accumulation in the brains of transgenic mice overexpressing AD mutant ß-amyloid precursor protein (APP). Therefore, the brain IIS may be a key modifiable molecular target in the pathophysiology of AD. IRS-1 and IRS-2 are critical nodes in IIS as substrates for insulin receptor and IGF-1 receptor, although the functional differences between IRS-1 and IRS-2 in the adult brain are yet to be explored. To examine their relative contribution to the brain IIS activity and AD pathomechanism, we generated APP transgenic mice lacking either IRS-1 or IRS-2. IRS-1 deficiency had little effects on the brain IIS pathway associated with compensatory activation of IRS-2, whereas IRS-2 deficiency was not fully compensated by activation of IRS-1, and the downstream activation of Akt also was significantly compromised. Pathological analyses of the cortical tissues showed that the biochemical levels of soluble and insoluble amyloid-ß, the amyloid-ß histopathology, and tau phosphorylation were not affected by the absence of IRS-1, in contrast to the marked alteration in IRS-2 deleted mice. These results suggest the predominance of IRS-2 in the brain IIS, and support the hypothesis that reduced IIS exerts anti-amyloid effects in the brain.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Placa Amiloide/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas tau/metabolismo
3.
J Neurochem ; 136(1): 36-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26444684

RESUMO

Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain.


Assuntos
Medo/fisiologia , Hipocampo/enzimologia , Memória/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Condicionamento Clássico/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/psicologia , Hipocampo/citologia , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Sinapses
4.
Mol Brain ; 6: 11, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23452928

RESUMO

BACKGROUND: Pavlovian fear conditioning is a classical form of associative learning, which depends on associative synaptic plasticity in the amygdala. Recent findings suggest that the central amygdala (CeA) plays an active role in the acquisition of fear learning. However, little is known about the synaptic properties of the CeA in fear learning. The capsular part of the central amygdala (CeC) receives direct nociceptive information from the external part of the lateral parabrachial nucleus (lPB), as well as highly processed polymodal signals from the basolateral nucleus of the amygdala (BLA). Therefore, we focused on CeC as a convergence point for polymodal BLA signals and nociceptive lPB signals, and explored the synaptic regulation of these pathways in fear conditioning. RESULTS: In this study, we show that fear conditioning results in synaptic potentiation in both lPB-CeC and BLA-CeC synapses. This potentiation is dependent on associative fear learning, rather than on nociceptive or sensory experience, or fear memory retrieval. The synaptic weight of the lPB-CeC and BLA-CeC pathways is correlated in fear-conditioned mice, suggesting that fear learning may induce activity-dependent heterosynaptic interactions between lPB-CeC and BLA-CeC pathways. This synaptic potentiation is associated with both postsynaptic and presynaptic changes in the lPB-CeC and BLA-CeC synapses. CONCLUSIONS: These results indicate that the CeC may provide an important locus of Pavlovian association, integrating direct nociceptive signals with polymodal sensory signals. In addition to the well-established plasticity of the lateral amygdala, the multi-step nature of this association system contributes to the highly orchestrated tuning of fear learning.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Psicológico , Potenciais Pós-Sinápticos Excitadores , Cinética , Camundongos , N-Metilaspartato/metabolismo , Nociceptividade , Receptores de N-Metil-D-Aspartato/metabolismo , Limiar Sensorial , Estresse Mecânico , Temperatura , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...