Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1156120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900138

RESUMO

Introduction: Prostate cancer (PCa) presents a significant health challenge in men, with a substantial number of deaths attributed to metastatic castration resistant PCa (mCRPC). Moreover, African American men experience disproportionately high mortality rates due to PCa. This study delves into the pivotal role of SPDEF, a prostate specific Ets transcription factor, and its regulation by DNA methylation in the context of PCa progression. Methods: We performed Epigenetic reprogramming using daily treatment with non-toxic dose of 5Aza-2-deoxycytidine (5Aza-dC) for two weeks to assess its impact on PDEF expression in prostate cancer cells. Next, we conducted functional studies on reprogrammed cells, including cell migration (wound-healing assay), invasion (Boyden-Chamber test), and proliferation (MTT assay) to comprehensively evaluate the consequences of altered PDEF expression. We used bisulfite sequencing (BSP) to examine DNA methylation at SPDEF promoter. Simultaneously, we utilized siRNA-mediated targeting of key DNMTs (DNMT1, DNMT3A, and DNMT3B) to elucidate their specific role in regulating PDEF. We measured mRNA and protein expressions using qRT-PCR and immune-blotting techniques, respectively. Results: In this report, we observed that: a) there is a gradual decrease in SPDEF expression with a concomitant increase in methylated CpG sites within the SPDEF gene during prostate cancer progression from lower to higher Gleason grade; b) Expression of DNMT's (DNMT1, 3a and 3b) is increased during prostate cancer progression, and there is an inverse correlation between SPDEF and DNMT expression; c) SPDEF levels are decreased in RC77/T, a line of PCa cells from African American origin similar to PC3 and DU145 cells (CRPC cells), as compared to LNCaP cells , a line of androgen dependent cells,; d) the 5' CpG island of SPDEF gene are hypermethylated in SPDEF-negative CRPC ( PC3, DU145 and RC77/T) cell lines but the same regions are hypomethylated in SPDEF-positive castrate sensitive (LNCaP) cell line ; (e) expression of SPDEF in PCa cells lacking SPDEF decreases cell migration and invasion, but has no significant effect on cell proliferation, and; (f) treatment with the demethylating agent, 5-aza-2'-deoxycytidine, or silencing of the DNMT's by siRNA, partially restores SPDEF expression in SPDEF-negative PCa cell lines, and decreases cell migration and invasion. Discussion: These results indicate hypermethylation is a prevalent mechanism for decreasing SPDEF expression during prostate cancer progression. The data demonstrate that loss of SPDEF expression in prostate cancer cells, a critical step in cellular plasticity, results from a potentially reversible process of aberrant DNA methylation. These studies suggest DMNT activity as a potential therapeutic vulnerability that can be exploited for limiting cellular plasticity, tumor progression, and therapy resistance in prostate cancer.


Assuntos
Metilação de DNA , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem Celular Tumoral , Ilhas de CpG/genética , Decitabina , RNA Interferente Pequeno , Proteínas Proto-Oncogênicas c-ets/genética
2.
Cancer ; 129(6): 829-833, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36632769

RESUMO

BACKGROUND: Louisiana continues to have one of the highest breast cancer mortality rates in the nation, and Black women are disproportionally affected. Louisiana has made advances in improving access to breast cancer screening through the expansion of Medicaid. There remains, however, broad underuse of advanced imaging technology such as screening breast magnetic resonance imaging (MRI), particularly for Black women. METHODS: Breast MRI has been proven to be very sensitive for the early detection of breast cancer in women at high risk. MRI is more sensitive than mammography for aggressive, invasive breast cancer types, which disproportionally affect Black women. Here the authors identify potential barriers to breast MRI screening in Black women, propose strategies to address disparities in access, and advocate for specific recommendations for change. RESULTS: Cost was identified as one of the greatest barriers to screening breast MRI. The authors propose implementation of cost-saving, abbreviated protocols to address cost along with lobbying for further expansion of the Affordable Care Act (ACA) to include coverage for screening breast MRI. In addition, addressing gaps in communication and knowledge and facilitating providers' ability to readily identify women who might benefit from MRI could be particularly impactful for high-risk Black women in Louisiana communities. CONCLUSIONS: Since the adoption of the ACA in Louisiana, Black women have continued to have disproportionally high breast cancer mortality rates. This persistent disparity provides evidence that additional change is needed. This change should include exploring innovative ways to make advanced imaging technology such as breast MRI more accessible and expanding research to specifically address community and culturally specific barriers.


Assuntos
Neoplasias da Mama , Patient Protection and Affordable Care Act , Estados Unidos , Feminino , Humanos , Política Organizacional , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/prevenção & controle , Mamografia , Louisiana/epidemiologia , Detecção Precoce de Câncer/métodos , Imageamento por Ressonância Magnética
3.
Am J Prev Med ; 63(1 Suppl 1): S83-S92, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35725146

RESUMO

INTRODUCTION: Breast cancer is a heterogeneous disease, consisting of multiple molecular subtypes. Obesity has been associated with an increased risk for postmenopausal breast cancer, but few studies have examined breast cancer subtypes separately. Obesity is often complicated by type 2 diabetes, but the possible association of diabetes with specific breast cancer subtypes remains poorly understood. METHODS: In this retrospective case-control study, Louisiana Tumor Registry records of primary invasive breast cancer diagnosed in 2010-2015 were linked to electronic health records in the Louisiana Public Health Institute's Research Action for Health Network. Controls were selected from Research Action for Health Network and matched to cases by age and race. Conditional logistic regression was used to identify metabolic risk factors. Data analysis was conducted in 2020‒2021. RESULTS: There was a significant association between diabetes and breast cancer for Luminal A, Triple-Negative Breast Cancer, and human epidermal growth factor 2‒positive subtypes. In multiple logistic regression, including both obesity status and diabetes as independent risk factors, Luminal A breast cancer was also associated with overweight status. Diabetes was associated with increased risk for Luminal A and Triple-Negative Breast Cancer in subgroup analyses, including women aged ≥50 years, Black women, and White women. CONCLUSIONS: Although research has identified obesity and diabetes as risk factors for breast cancer, these results underscore that comorbid risk is complex and may differ by molecular subtype. There was a significant association between diabetes and the incidence of Luminal A, Triple-Negative Breast Cancer, and human epidermal growth factor 2‒positive breast cancer in Louisiana.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Obesidade , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/epidemiologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Incidência , Louisiana/epidemiologia , Obesidade/epidemiologia , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Estudos Retrospectivos , Fatores de Risco , Neoplasias de Mama Triplo Negativas/epidemiologia
4.
Cancer Epidemiol Biomarkers Prev ; 31(8): 1532-1538, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654355

RESUMO

BACKGROUND: Race modifies the association between anthropometric measures of obesity and cancer risk. However, the degree to which abdominal visceral adipose tissue (VAT) and total fat mass (FM) are associated with cancer risk is not known. METHODS: The sample included 3,017 White and 1,347 Black adults who were assessed between 1995 and 2016 and followed for outcome assessment through 2017. Abdominal VAT and FM were measured using imaging techniques. The co-primary endpoints were diagnosis of histologically confirmed invasive cancer (excluding nonmelanoma skin cancer) or death from cancer. Multivariable Cox proportional hazards models quantified the HR of incident cancer and cancer mortality. RESULTS: There were 353 incident cancer cases and 75 cancer deaths in an average of 12.9 years of follow-up. Both VAT [HR, 1.21; 95% confidence interval (CI), 1.09-1.36] and FM (HR, 1.25; 95% CI, 1.10-1.43) were significantly associated with incident cancer, while VAT (HR, 1.28; 95% CI, 1.01-1.61) was significantly associated with cancer mortality after adjustment for several covariates. VAT remained significantly associated with cancer incidence (HR, 1.22; 95% CI, 1.03-1.46) after additional inclusion of FM in the multivariable model, but not vice versa. There were no significant sex- or race-interactions. CONCLUSIONS: VAT was associated with risk of cancer and cancer mortality in this cohort, and the associations did not differ by sex or race. The association between VAT and incident cancer was largely independent of total FM. IMPACT: Our results suggest that utility of anthropometry in assessing obesity-related cancer risk may need to be further refined by including more direct measures of adiposity.


Assuntos
Adiposidade , Neoplasias , Adulto , Índice de Massa Corporal , Humanos , Incidência , Neoplasias/epidemiologia , Obesidade/complicações , Obesidade/epidemiologia
5.
Front Cardiovasc Med ; 9: 756734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509276

RESUMO

Racist and discriminatory federal, state, and local housing policies significantly contribute to disparities in cardiovascular disease incidence and mortality for individuals that self-identify as Black or African American. Here we highlight three key housing policies - "redlining," zoning, and the construction of highways - which have wrought a powerful, sustained, and destructive impact on cardiovascular health in Black/African American communities. Redlining and highway construction policies have restricted access to quality health care, increased exposure to carcinogens such as PM2.5, and increased exposure to extreme heat. At the root of these policy decisions are longstanding, toxic societal factors including racism, segregation, and discrimination, which also serve to perpetuate racial inequities in cardiovascular health. Here, we review these societal and structural factors and then link them with biological processes such as telomere shortening, allostatic load, oxidative stress, and tissue inflammation. Lastly, we focus on the impact of inflammation on the immune system and the molecular mechanisms by which the inflamed immune microenvironment promotes the formation of atherosclerotic plaques. We propose that racial residential segregation and discrimination increases tissue inflammation and cytokine production, resulting in dysregulated immune signaling, which promotes plaque formation and cardiovascular disease. This framework has the power to link structural racism not only to cardiovascular disease, but also to cancer.

6.
EBioMedicine ; 77: 103910, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35248994

RESUMO

BACKGROUND: Low-density neutrophils (LDN) are increased in several inflammatory diseases and may also play a role in the low-grade chronic inflammation associated with obesity. Here we explored their role in obesity, determined their gene signatures, and assessed the effect of bariatric surgery. METHODS: We compared the number, function, and gene expression profiles of circulating LDN in morbidly obese patients (MOP, n=27; body mass index (BMI) > 40 Kg/m2) and normal-weight controls (NWC, n=20; BMI < 25 Kg/m2) in a case-control study. Additionally, in a prospective longitudinal study, we measured changes in the frequency of LDN after bariatric surgery (n=36) and tested for associations with metabolic and inflammatory parameters. FINDINGS: LDN and inflammatory markers were significantly increased in MOP compared to NWC. Transcriptome analysis showed increased neutrophil-related gene expression signatures associated with inflammation, neutrophil activation, and immunosuppressive function. However, LDN did not suppress T cells proliferation and produced low levels of reactive oxygen species (ROS). Circulating LDN in MOP significantly decreased after bariatric surgery in parallel with BMI, metabolic syndrome, and inflammatory markers. INTERPRETATION: Obesity increases LDN displaying an inflammatory gene signature. Our results suggest that LDN may represent a neutrophil subset associated with chronic inflammation, a feature of obesity that has been previously associated with the appearance and progression of co-morbidities. Furthermore, bariatric surgery, as an efficient therapy for severe obesity, reduces LDN in circulation and improves several components of the metabolic syndrome supporting its recognized anti-inflammatory and beneficial metabolic effects. FUNDING: This work was supported in part by grants from the National Institutes of Health (NIH; 5P30GM114732-02, P20CA233374 - A. Ochoa and L. Miele), Pennington Biomedical NORC (P30DK072476 - E. Ravussin & LSU-NO Stanley S. Scott Cancer Center and Louisiana Clinical and Translational Science Center (LACaTS; U54-GM104940 - J. Kirwan).


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Cirurgia Bariátrica/métodos , Estudos de Casos e Controles , Humanos , Estudos Longitudinais , Neutrófilos/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Estudos Prospectivos
7.
Front Immunol ; 12: 695972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34341659

RESUMO

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19 that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1+ G-MDSC (Arg+G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg+G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , Células Supressoras Mieloides/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/administração & dosagem , Arginase/antagonistas & inibidores , Arginase/metabolismo , Arginina/administração & dosagem , Arginina/sangue , Arginina/metabolismo , Infecções Assintomáticas , COVID-19/sangue , COVID-19/diagnóstico , Estudos de Casos e Controles , Quimioterapia Combinada/métodos , Inibidores Enzimáticos/administração & dosagem , Feminino , Granulócitos/metabolismo , Voluntários Saudáveis , Humanos , Interferon Tipo I/metabolismo , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Tratamento Farmacológico da COVID-19
8.
Mol Cancer Ther ; 20(7): 1295-1304, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33879557

RESUMO

Immune-checkpoint inhibitor (ICI) therapy has been widely used to treat different human cancers, particularly advanced solid tumors. However, clinical studies have reported that ICI immunotherapy benefits only ∼15% of patients with colorectal cancer, specifically those with tumors characterized by microsatellite instability (MSI), a molecular marker of defective DNA mismatch repair (dMMR). For the majority of patients with colorectal cancer who carry proficient MMR (pMMR), ICIs have shown little clinical benefit. In this study, we examined the efficacy of sulindac to enhance the response of pMMR colorectal cancer to anti-PD-L1 immunotherapy. We utilized a CT26 syngeneic mouse tumor model to compare the inhibitory effects of PD-L1 antibody (Ab), sulindac, and their combination on pMMR colorectal cancer tumor growth. We found that mice treated with combination therapy showed a significant reduction in tumor volume, along with increased infiltration of CD8+ T lymphocytes in the tumor tissues. We also demonstrated that sulindac could downregulate PD-L1 by blocking NF-κB signaling, which in turn led to a decrease in exosomal PD-L1. Notably, PD-L1 Ab can be bound and consumed by exosomal PD-L1 in the blood circulation. Therefore, in combination therapy, sulindac downregulating PD-L1 leads to increased availability of PD-L1 Ab, which potentially improves the overall efficacy of anti-PD-L1 therapy. We also show that low-dose sulindac does not appear to have a systemic inhibitory effect on prostaglandin E2 (PGE2). In conclusion, our findings provide unique insights into the mechanism of action and efficacy for sulindac as an immunomodulatory agent in combination with anti-PD-L1 therapy for the treatment of pMMR colorectal cancer.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Sulindaco/farmacologia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos
9.
medRxiv ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33791717

RESUMO

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19, that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of Granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1 + G-MDSC (Arg + G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg + G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.

10.
PLoS One ; 16(3): e0247640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661923

RESUMO

BACKGROUND: Neutralizing-antibody (nAb) is the major focus of most ongoing COVID-19 vaccine trials. However, nAb response against SARS-CoV-2, when present, decays rapidly. Given the myriad roles of antibodies in immune responses, it is possible that antibodies could also mediate protection against SARS-CoV-2 via effector mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), which we sought to explore here. METHODS: Plasma of 3 uninfected controls and 20 subjects exposed to, or recovering from, SARS-CoV-2 infection were collected from U.S. and sub-Saharan Africa. Immunofluorescence assay was used to detect the presence of SARS-CoV-2 specific IgG antibodies in the plasma samples. SARS-CoV-2 specific neutralizing capability of these plasmas was assessed with SARS-CoV-2 spike pseudotyped virus. ADCC activity was assessed with a calcein release assay. RESULTS: SARS-CoV-2 specific IgG antibodies were detected in all COVID-19 subjects studied. All but three COVID-19 subjects contained nAb at high potency (>80% neutralization). Plasma from 19/20 of COVID-19 subjects also demonstrated strong ADCC activity against SARS-CoV-2 spike glycoprotein, including two individuals without nAb against SARS-CoV-2. CONCLUSION: Both neutralizing and non-neutralizing COVID-19 plasmas can mediate ADCC. Our findings argue that evaluation of potential vaccines against SARS-CoV-2 should include investigation of the magnitude and durability of ADCC, in addition to nAb.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , COVID-19/sangue , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Feminino , Células HEK293 , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
11.
Cell Immunol ; 362: 104302, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33592540

RESUMO

MDSC are a heterogeneous population of immature myeloid cells that are released by biological stress such as tissue damage and inflammation. Conventionally, MDSC are known for their detrimental role in chronic inflammation and neoplastic conditions. However, their intrinsic functions in immunoregulation, wound healing, and angiogenesis are intended to protect from over-reactive immune responses, maintenance of immunotolerance, tissue repair, and homeostasis. Paradoxically, under certain conditions, MDSC can impair protective immune responses and exacerbate the disease. The transition from protective to harmful MDSC is most likely driven by environmental and epigenetic mechanisms induced by prolonged exposure to unresolved inflammatory triggers. Here, we review several examples of the dual impact of MDSC in conditions such as maternal-fetal tolerance, self-antigens immunotolerance, obesity-associated cancer, sepsis and trauma. Moreover, we also highlighted the evidence indicating that MDSC have a role in COVID-19 pathophysiology. Finally, we have summarized the evidence indicating epigenetic mechanisms associated with MDSC function.


Assuntos
Células Supressoras Mieloides/imunologia , Animais , COVID-19/imunologia , Epigênese Genética , Feminino , Humanos , Tolerância Imunológica/imunologia , Inflamação/imunologia , Masculino , Neoplasias/imunologia , Obesidade/imunologia , Gravidez , Cicatrização/imunologia
12.
Obesity (Silver Spring) ; 29(6): 944-953, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33616242

RESUMO

Obesity is a risk factor for developing several cancers. The dysfunctional metabolism and chronic activation of inflammatory pathways in obesity create a milieu that supports tumor initiation, progression, and metastasis. Obesity-associated metabolic, endocrine, and inflammatory mediators, besides interacting with cells leading to a malignant transformation, also modify the intrinsic metabolic and functional characteristics of immune myeloid cells. Here, the evidence supporting the hypothesis that obesity metabolically primes and promotes the expansion of myeloid cells with immunosuppressive and pro-oncogenic properties is discussed. In consequence, the accumulation of these cells, such as myeloid-derived suppressor cells and some subtypes of adipose-tissue macrophages, creates a microenvironment conducive to tumor development. In this review, the role of lipids, insulin, and leptin, which are dysregulated in obesity, is emphasized, as well as dietary nutrients in metabolic reprogramming of these myeloid cells. Moreover, emerging evidence indicating that obesity enhances immunotherapy response and hypothesized mechanisms are summarized. Priorities in deeper exploration involving the mechanisms of cross talk between metabolic disorders and myeloid cells related to cancer risk in patients with obesity are highlighted.


Assuntos
Imunoterapia , Células Supressoras Mieloides/fisiologia , Neoplasias/etiologia , Obesidade/imunologia , Tecido Adiposo/metabolismo , Animais , Carcinogênese/imunologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Imunoterapia/métodos , Mediadores da Inflamação/metabolismo , Leptina/metabolismo , Macrófagos/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/prevenção & controle , Obesidade/complicações , Obesidade/metabolismo , Obesidade/terapia , Fatores de Risco , Microambiente Tumoral/imunologia
13.
J Immunother Cancer ; 9(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33495297

RESUMO

BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors (eg, olaparib) are effective against BRCA-mutated cancers at/near maximum tolerated doses by trapping PARP-1 on damaged chromatin, benefitting only small patient proportions. The benefits of targeting non-DNA repair aspects of PARP with metronomic doses remain unexplored. METHODS: Colon epithelial cells or mouse or human bone marrow (BM)-derived-myeloid-derived suppressor cells (MDSCs) were stimulated to assess the effect of partial PARP-1 inhibition on inflammatory gene expression or immune suppression. Mice treated with azoxymethane/four dextran-sulfate-sodium cycles or APCMin/+ mice bred into PARP-1+/- or treated with olaparib were used to examine the role of PARP-1 in colitis-induced or spontaneous colon cancer, respectively. Syngeneic MC-38 cell-based (microsatellite instability, MSIhigh) or CT-26 cell-based (microsatellite stable, MSS) tumor models were used to assess the effects of PARP inhibition on host responses and synergy with anti-Programmed cell Death protein (PD)-1 immunotherapy. RESULTS: Partial PARP-1 inhibition, via gene heterozygosity or a moderate dose of olaparib, protected against colitis-mediated/APCMin -mediated intestinal tumorigenesis and APCMin -associated cachexia, while extensive inhibition, via gene knockout or a high dose of olaparib, was ineffective or aggravating. A sub-IC50-olaparib dose or PARP-1 heterozygosity was sufficient to block tumorigenesis in a syngeneic colon cancer model by modulating the suppressive function, but not intratumoral migration or differentiation, of MDSCs, with concomitant increases in intratumoral T cell function and cytotoxicity, as assessed by granzyme-B/interferon-γ levels. Adoptive transfer of WT-BM-MDSCs abolished the protective effects of PARP-1 heterozygosity. The mechanism of MDSC modulation involved a reduction in arginase-1/inducible nitric oxide synthase/cyclo-oxygenase-2, but independent of PARP-1 trapping on chromatin. Although a high-concentration olaparib or the high-trapping PARP inhibitor, talazoparib, activated stimulator of interferon gene (STING) in BRCA-proficient cells and induced DNA damage, sub-IC50 concentrations of either drug failed to induce activation of the dsDNA break sensor. STING expression appeared dispensable for MDSC suppressive function and was not strictly required for olaparib-mediated effects. Ironically, STING activation blocked human and mouse MDSC function with no additive effects with olaparib. A metronomic dose of olaparib was highly synergistic with anti-PD-1-based immunotherapy, leading to eradication of MSIhigh or reduction of MSS tumors in mice. CONCLUSIONS: These results support a paradigm-shifting concept that expands the utility of PARP inhibitor and encourage testing metronomic dosing of PARP inhibitor to enhance the efficacy of checkpoint inhibitor-based immunotherapies in cancer.


Assuntos
Colite/complicações , Neoplasias do Colo/tratamento farmacológico , Inibidores de Checkpoint Imunológico/administração & dosagem , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Administração Metronômica , Animais , Azoximetano/efeitos adversos , Linhagem Celular Tumoral , Colite/induzido quimicamente , Neoplasias do Colo/etiologia , Sulfato de Dextrana/efeitos adversos , Sinergismo Farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Células Supressoras Mieloides/metabolismo , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncogene ; 37(33): 4534-4545, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743595

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers such as Kaposi's sarcoma (KS), which represents the most common AIDS-associated malignancy that lacks effective treatment options. Despite its clear role in AIDS malignancies, the fact that only a small set of KSHV-infected patients will eventually develop these tumors implies that additional co-factors are required for the development of KSHV-related cancers. In the current study, we demonstrate for the first time that KSHV de novo infection or viral latent proteins are able to transactivate human endogenous retrovirus K (HERV-K) through a variety of cellular signaling pathways and transcriptional factors. Moreover, we found that HERV-K transactivation, particularly activation of its encoded oncogenic NP9 protein, plays an important role in KSHV pathogenesis and tumorigenesis in vitro and in vivo. Our data provide innovative insights into the mechanisms of HERV-K transactivation contributing to viral oncogenesis, which may represent a promising target for KS treatment.


Assuntos
Retrovirus Endógenos/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Ativação Transcricional/genética , Adulto , Idoso , Carcinogênese/genética , Linhagem Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteínas Virais/genética , Adulto Jovem
16.
Breast Cancer Res Treat ; 169(2): 381-390, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29392581

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited. Patient-derived xenograft (PDX) models have emerged as superior models for target discovery experiments because they recapitulate features of patient tumors that are limited by cell-line derived xenograft methods. METHODS: We utilize immunohistochemistry, qRT-PCR and Western Blot to visualize tumor architecture, cellular composition, genomic and protein expressions of a new CL-TNBC PDX model (TU-BcX-2O0). We utilize tissue decellularization techniques to examine extracellular matrix composition of TU-BcX-2O0. RESULTS: Our laboratory successfully established a TNBC PDX tumor, TU-BCX-2O0, which represents a CL-TNBC subtype and maintains this phenotype throughout subsequent passaging. We dissected TU-BCx-2O0 to examine aspects of this complex tumor that can be targeted by developing therapeutics, including the whole and intact breast tumor, specific cell populations within the tumor, and the extracellular matrix. CONCLUSIONS: Here, we characterize a claudin-low TNBC patient-derived xenograft model that can be utilized for therapeutic research studies.


Assuntos
Proliferação de Células/genética , Claudinas/genética , Recidiva Local de Neoplasia/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Recidiva Local de Neoplasia/patologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncoimmunology ; 6(10): e1344804, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123954

RESUMO

Myeloid-derived suppressor cells (MDSC) promote tumor growth by blocking anti-tumor T cell responses. Recent reports show that MDSC increase fatty acid uptake and fatty acid oxidation (FAO) to support their immunosuppressive functions. Inhibition of FAO promoted a therapeutic T cell-mediated anti-tumor effect. Here, we sought to determine the mechanisms by which tumor-infiltrating MDSC increase the uptake of exogenous lipids and undergo metabolic and functional reprogramming to become highly immunosuppressive cells. The results showed that tumor-derived cytokines (G-CSF and GM-CSF) and the subsequent signaling through STAT3 and STAT5 induce the expression of lipid transport receptors with the resulting increase in the uptake of lipids present at high concentrations in the tumor microenvironment. The intracellular accumulation of lipids increases the oxidative metabolism and activates the immunosuppressive mechanisms. Inhibition of STAT3 or STAT5 signaling or genetic depletion of the fatty acid translocase CD36 inhibits the activation of oxidative metabolism and the induction of immunosuppressive function in tumor-infiltrating MDSC and results in a CD8+ T cell-dependent delay in tumor growth. Of note, human tumor-infiltrating and peripheral blood MDSC also upregulate the expression of lipid transport proteins, and lipids promote the generation of highly suppressive human MDSC in vitro. Our data therefore provide a mechanism by which tumor-derived factors and the high lipid content in the tumor microenvironment can cause the profound metabolic and functional changes found in MDSC and suggest novel approaches to prevent or reverse these processes. These results could further enhance the efficacy of cancer immunotherapy.

18.
J Leukoc Biol ; 102(2): 369-380, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28515225

RESUMO

The past decade has seen a significant interest in investigating the intracellular metabolism of cells of the immune system. This has increased the realization that immune cells endure metabolic reprogramming upon responding to pathogen-derived or inflammatory signals. More importantly, not only does this metabolic switch provide for the bioenergetic and biosynthetic demands but also it, in a highly specific manner, determines the cellular fate and function. In this review, we discuss the metabolic aspects that regulate the differentiation and function of myeloid cells, pivotal for both innate and adaptive immunity. The manipulation of these pathways can alter the function of these cells and therefore, could provide novel therapeutic approaches in cancer and other chronic inflammatory conditions.


Assuntos
Diferenciação Celular/imunologia , Redes e Vias Metabólicas/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Animais , Humanos , Células Mieloides/citologia
19.
Front Immunol ; 8: 93, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28223985

RESUMO

Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.

20.
Stem Cell Res ; 19: 139-147, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28167342

RESUMO

Breast tumors are heterogeneous and carry a small population of progenitor cells that can produce various subtypes of breast cancer. SATB2 (special AT-rich binding protein-2) is a newly identified transcription factor and epigenetic regulator. It is highly expressed in embryonic stem cells, but not in adult tissues, and regulates pluripotency-maintaining factors. However, the molecular mechanisms by which SATB2 induces transformation of human mammary epithelial cells (HMECs) leading to malignant phenotype are unknown. The main goal of this paper is to examine the molecular mechanisms by which SATB2 induces cellular transformation of HMECs into cells that are capable of self-renewal. SATB2-transformed HMECs gain the phenotype of breast progenitor cells by expressing markers of stem cells, pluripotency-maintaining factor, and epithelial to mesenchymal transition. SATB2 is highly expressed in human breast cancer cell lines, primary mammary tissues and cancer stem cells (CSCs), but not in HMECs and normal breast tissues. Chromatin Immunoprecipitation assays demonstrate that SATB2 can directly bind to promoters of Bcl-2, c-Myc, Nanog, Klf4, and XIAP, suggesting a role of SATB2 in regulation of pluripotency, cell survival and proliferation. Furthermore, inhibition of SATB2 by shRNA in breast cancer cell lines and CSCs attenuates cell proliferation and EMT phenotype. Our results suggest that SATB2 induces dedifferentiation/transformation of mature HMECs into progenitor-like cells.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/citologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Lentivirus/genética , Proteínas de Ligação à Região de Interação com a Matriz/antagonistas & inibidores , Proteínas de Ligação à Região de Interação com a Matriz/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...