Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Cancer ; 154(4): 712-722, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984064

RESUMO

Probably, the most important factor for the survival of a melanoma patient is early detection and precise diagnosis. Although in most cases these tasks are readily carried out by pathologists and dermatologists, there are still difficult cases in which no consensus among experts is achieved. To deal with such cases, new methodologies are required. Following this motivation, we explore here the use of lipid imaging mass spectrometry as a complementary tool for the aid in the diagnosis. Thus, 53 samples (15 nevus, 24 primary melanomas, and 14 metastasis) were explored with the aid of a mass spectrometer, using negative polarity. The rich lipid fingerprint obtained from the samples allowed us to set up an artificial intelligence-based classification model that achieved 100% of specificity and precision both in training and validation data sets. A deeper analysis of the image data shows that the technique reports important information on the tumor microenvironment that may give invaluable insights in the prognosis of the lesion, with the correct interpretation.


Assuntos
Melanoma , Nevo , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Inteligência Artificial , Nevo/diagnóstico , Nevo/patologia , Lipídeos , Microambiente Tumoral
2.
Anal Chem ; 95(4): 2285-2293, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36638042

RESUMO

Lipid imaging mass spectrometry (LIMS) has been tested in several pathological contexts, demonstrating its ability to segregate and isolate lipid signatures in complex tissues, thanks to the technique's spatial resolution. However, it cannot yet compete with the superior identification power of high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS), and therefore, very often, the latter is used to refine the assignment of the species detected by LIMS. Also, it is not clear if the differences in sensitivity and spatial resolution between the two techniques lead to a similar panel of biomarkers for a given disease. Here, we explore the capabilities of LIMS and HPLC-MS to produce a panel of lipid biomarkers to screen nephrectomy samples from 40 clear cell renal cell carcinoma patients. The same set of samples was explored by both techniques, and despite the important differences between them in terms of the number of detected and identified species (148 by LIMS and 344 by HPLC-MS in negative-ion mode) and the presence/absence of image capabilities, similar conclusions were reached: using the lipid fingerprint, it is possible to set up classifiers that correctly identify the samples as either healthy or tumor samples. The spatial resolution of LIMS enables extraction of additional information, such as the existence of necrotic areas or the existence of different tumor cell populations, but such information does not seem determinant for the correct classification of the samples, or it may be somehow compensated by the higher analytical power of HPLC-MS. Similar conclusions were reached with two very different techniques, validating their use for the discovery of lipid biomarkers.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida de Alta Pressão/métodos , Lipidômica/métodos , Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/diagnóstico , Lipídeos/análise
3.
Oncol Lett ; 23(5): 140, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35340556

RESUMO

The incidence rates of melanoma have increased steadily in recent decades and nearly 25% of the patients diagnosed with early-stage melanoma will eventually develop metastasis, for which there is currently no fully effective treatment. The link between phospholipases and tumors has been studied extensively, particularly in breast and colon cancers. With the aim of finding new biomarkers and therapeutic options for melanoma, the expression of different phospholipases was assessed in 17 distinct cell lines in the present study, demonstrating that phospholipase D2 (PLD2) is upregulated in metastatic melanoma as compared to normal skin melanocytes. These results were corroborated by immunofluorescence and lipase activity assays. Upregulation of PLD2 expression and increased lipase activity were observed in metastatic melanoma relative to normal skin melanocytes. So far, the implication of PLD2 activity in melanoma malignancies has remained elusive. To the best of our knowledge, the present study was the first to demonstrate that the overexpression of PLD2 enhances lipase activity, and its effect to increase the proliferation, migration and invasion capacity of melanoma cells was assessed with XTT and Transwell assays. In addition, silencing of PLD2 in melanoma cells reduced the metastatic potential of these cells. The present study provided evidence that PLD2 is involved in melanoma malignancy and in particular, in its metastatic potential, and established a basis for future studies evaluating PLD2 blockade as a therapeutic strategy to manage this condition.

4.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769491

RESUMO

Melanoma is the deadliest form of skin cancer due to its ability to colonize distant sites and initiate metastasis. Although these processes largely depend on the lipid-based cell membrane scaffold, our understanding of the melanoma lipid phenotype lags behind most other aspects of this tumor cell. Here, we examined a panel of normal human epidermal and nevus melanocytes and primary and metastatic melanoma cell lines to determine whether distinctive cell-intrinsic lipidomes can discern non-neoplastic from neoplastic melanocytes and define their metastatic potential. Lipidome profiles were obtained by UHPLC-ESI mass-spectrometry, and differences in the signatures were analyzed by multivariate statistical analyses. Significant and highly specific changes in more than 30 lipid species were annotated in the initiation of melanoma, whereas less numerous changes were associated with melanoma progression and the non-malignant transformation of nevus melanocytes. Notably, the "malignancy lipid signature" features marked drops in pivotal membrane lipids, like sphingomyelins, and aberrant elevation of ether-type lipids and phosphatidylglycerol and phosphatidylinositol variants, suggesting a previously undefined remodeling of sphingolipid and glycerophospholipid metabolism. Besides broadening the molecular definition of this neoplasm, the different lipid profiles identified may help improve the clinical diagnosis/prognosis and facilitate therapeutic interventions for cutaneous melanoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Lipidômica/métodos , Lipídeos/análise , Melanócitos/metabolismo , Melanoma/patologia , Redes e Vias Metabólicas , Neoplasias Cutâneas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Biologia Computacional , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas/métodos , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
5.
Anal Chem ; 93(27): 9364-9372, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34192457

RESUMO

For many years, traditional histology has been the gold standard for the diagnosis of many diseases. However, alternative and powerful techniques have appeared in recent years that complement the information extracted from a tissue section. One of the most promising techniques is imaging mass spectrometry applied to lipidomics. Here, we demonstrate the capabilities of this technique to highlight the architectural features of the human kidney at a spatial resolution of 10 µm. Our data demonstrate that up to seven different segments of the nephron and the interstitial tissue can be readily identified in the sections according to their characteristic lipid fingerprints and that such fingerprints are maintained among different individuals (n = 32). These results set the foundation for further studies on the metabolic bases of the diseases affecting the human kidney.


Assuntos
Técnicas Histológicas , Lipídeos , Humanos , Rim/diagnóstico por imagem , Lipidômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Am Soc Mass Spectrom ; 31(3): 517-526, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32126773

RESUMO

Imaging mass spectrometry (IMS) is becoming an essential technique in lipidomics. Still, many questions remain open, precluding it from achieving its full potential. Among them, identification of species directly from the tissue is of paramount importance. However, it is not an easy task, due to the abundance and variety of lipid species, their numerous fragmentation pathways, and the formation of a significant number of adducts, both with the matrix and with the cations present in the tissue. Here, we explore the fragmentation pathways of 17 lipid classes, demonstrating that in-source fragmentation hampers identification of some lipid species. Then, we analyze what type of adducts each class is more prone to form. Finally, we use that information together with data from on-tissue MS/MS and MS3 to refine the peak assignment in a real experiment over sections of human nevi, to demonstrate that statistical analysis of the data is significantly more robust if unwanted peaks due to fragmentation, matrix, and other species that only introduce noise in the analysis are excluded.


Assuntos
Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cátions/análise , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Espectrometria de Massas em Tandem/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-31978555

RESUMO

Staphylococcal nuclease and Tudor domain containing 1 (SND1) is an evolutionarily conserved protein present in eukaryotic cells from protozoa to mammals. SND1 has gained importance because it is overexpressed in aggressive cancer cells and diverse primary tumors. Indeed, it is regarded as a marker of cancer malignity. A broad range of molecular functions and the participation in many cellular processes have been attributed to SND1, mostly related to the regulation of gene expression. An increasing body of evidence points to a relevant relationship between SND1 and lipid metabolism. In this review, we summarize the knowledge about SND1 and its molecular and functional relationship with lipid metabolism. We highlight that SND1 plays a direct role in the regulation of cholesterol metabolism by affecting the activation of sterol response element-binding protein 2 (SREBP2) and we propose that that might have implications in the response of lipid homeostasis to stress situations.


Assuntos
Endonucleases/genética , Metabolismo dos Lipídeos/genética , Neoplasias/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Estresse Fisiológico/genética , Motivos de Aminoácidos , Animais , Colesterol/metabolismo , Biologia Computacional , Endonucleases/metabolismo , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Homeostase/genética , Humanos , Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Interferência de RNA , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Transcrição Gênica
8.
Data Brief ; 27: 104608, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31667320

RESUMO

The data contain information related to the research article entitled "Profiling of promoter occupancy by the SND1 transcriptional coactivator identifies downstream glycerolipid metabolic genes involved in TNFα response in human hepatoma cells" (DOI: 10.1093/nar/gkv858). In the article alluded to, we reported that tumor necrosis factor alpha (TNFα) increases notably the cellular content of the major glycerolipid phosphatidylcholine (PC). Here, accompanying lipidomic data determine the PC structural variants that have been identified in human hepatoma HepG2 cells and those whose relative abundance is modified by TNFα. We used ultrahigh performance liquid chromatography (UHPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS)-based lipidomic profiling to analyze lipid extracts of control and TNFα-treated HepG2 cells. The identity of PC individual species was elucidated using the values of the retention time and molecular weight in addition to the fragmentation patterns. MS data were then processed and analyzed for the characterization of statistically significant differences in detected structural variants. We have annotated the dataset of PC species that characterize HepG2 cells' phenotype, both under normal and pro-inflammatory conditions.

10.
Talanta ; 195: 619-627, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625592

RESUMO

The cerebrospinal fluid (CSF) lipidome is attracting increasing attention due to the importance of lipids in brain molecular signaling and their involvement in several neurological diseases. Different solvent systems have been used for the extraction of multiple lipid classes from CSF but no comparative study of the effectiveness of these protocols has been carried out. To optimize CSF lipid extraction for lipidomic measurements by untargeted ultra-high performance liquid chromatography - mass spectrometry, we evaluate and compare two sample preparation protocols, one involving protein precipitation with isopropanol (IPA) and other consisting of a liquid-liquid extraction with chloroform-methanol. For that purpose, human CSF from neurologically healthy and normolipidemic volunteers was used. The criteria established to compare these two methods were based on four critical aspects of sample preparation: simplicity, lipid coverage, reproducibility and recovery efficiencies. We found that both methods were highly reproducible techniques (>75% of the lipids with coefficient of variation (CV) <30%). In terms of recovery, the single-step IPA procedure yielded better values for most of the lipid classes and it was less toxic and simpler than the liquid-liquid extraction method. In relation to lipid coverage, variation in selectivity was observed between methods, providing evidence that IPA was more selective for polar lipids. Overall, IPA precipitation provides excellent results in terms of simplicity of execution, lipid coverage, reproducibility and recovery. We conclude that it is a choice procedure for large-scale, untargeted lipid profiling using UHPLC-MS in CSF analysis.


Assuntos
2-Propanol/química , Lipídeos/líquido cefalorraquidiano , Solventes/química , Precipitação Química , Clorofórmio/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Metanol/química , Reprodutibilidade dos Testes
11.
Mol Vis ; 25: 934-948, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038094

RESUMO

Purpose: The purpose was to select a simple and reproducible method for lipid measurements of human tears with ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS). Two sample preparation procedures were evaluated and compared: the Bligh and Dyer (BD) liquid-liquid extraction method with chloroform and methanol and protein precipitation with isopropanol (IPA). Methods: Reproducibility and recovery efficiencies of 20 non-endogenous internal lipid standards were tested in 10-µl tear samples from healthy subjects. The lipid coverage and the simplicity of execution were also assessed. Lipid profiles of the tear extracts were acquired with UHPLC-MS, uhpland the lipids were identified using SimLipid software. Results: Both methods were robust producing good lipid coverage and reproducibility and high recovery efficiencies. The two protocols identified a 69-feature tear lipidome that covered 11 lipid classes from six different lipid categories. The main differences in recovery were due to the intrinsic lipid selectivity of each solvent. Although both methods were similarly efficient in recovering O-acyl-ω-hydroxy fatty acid (OAHFAs) and non-polar lipids, polar lipids were more efficiently recovered with IPA precipitation, which, in turn, exhibited higher reproducibility. In addition, IPA precipitation is automatable and simpler than the BD approach. Conclusions: IPA precipitation is an excellent procedure for extracting lipids from small tear volumes for quantitative large-scale, untargeted lipid profiling, which may be useful for identifying lipid biomarkers in tears from patients with different ocular surface pathologies, allowing personalized therapies to be designed.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lipídeos/análise , Espectrometria de Massas/métodos , Lágrimas/química , Adulto , Feminino , Humanos , Masculino , Análise de Componente Principal , Padrões de Referência , Reprodutibilidade dos Testes
12.
Methods Mol Biol ; 1791: 51-65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30006701

RESUMO

Lipids are essential components of cells and tissues. They play active and central roles in signaling and many biological functions and therefore their dysregulation is very often the first signal of function alteration. Here we describe the protocol to analyze not only lipid expression in rat sciatic nerve but also the lipid distribution along its different anatomic areas. The protocol combines results from MALDI-IMS and UHPLC-MS/MS to identify and cartography the maximum number of lipid species in the tissue.


Assuntos
Metabolismo dos Lipídeos , Lipídeos , Metaboloma , Metabolômica , Nervo Isquiático/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Lipídeos/química , Lipídeos/isolamento & purificação , Metabolômica/métodos , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Fluxo de Trabalho
13.
Front Oncol ; 8: 606, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619748

RESUMO

The staphylococcal nuclease and Tudor domain containing 1 gene (SND1), also known as Tudor-SN, TSN or p100, encodes an evolutionarily conserved protein with invariant domain composition. SND1 contains four repeated staphylococcal nuclease domains and a single Tudor domain, which confer it endonuclease activity and extraordinary capacity for interacting with nucleic acids, individual proteins and protein complexes. Originally described as a transcriptional coactivator, SND1 plays fundamental roles in the regulation of gene expression, including RNA splicing, interference, stability, and editing, as well as in the regulation of protein and lipid homeostasis. Recently, SND1 has gained attention as a potential disease biomarker due to its positive correlation with cancer progression and metastatic spread. Such functional diversity of SND1 marks this gene as interesting for further analysis in relation with the multiple levels of regulation of SND1 protein production. In this review, we summarize the SND1 genomic region and promoter architecture, the set of transcription factors that can bind the proximal promoter, and the evidence supporting transactivation of SND1 promoter by a number of signal transduction pathways operating in different cell types and conditions. Unraveling the mechanisms responsible for SND1 promoter regulation is of utmost interest to decipher the SND1 contribution in the realm of both normal and abnormal physiology.

14.
Front Physiol ; 8: 737, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018360

RESUMO

Composed by a molecule of adenine and a molecule of ribose, adenosine is a paradigm of recyclable nucleoside with a multiplicity of functions that occupies a privileged position in the metabolic and regulatory contexts. Adenosine is formed continuously in intracellular and extracellular locations of all tissues. Extracellular adenosine is a signaling molecule, able to modulate a vast range of physiologic responses in many cells and organs, including digestive organs. The adenosine A1, A2A, A2B, and A3 receptors are P1 purinergic receptors, G protein-coupled proteins implicated in tissue protection. This review is focused on gastric acid secretion, a process centered on the parietal cell of the stomach, which contains large amounts of H+/K+-ATPase, the proton pump responsible for proton extrusion during acid secretion. Gastric acid secretion is regulated by an extensive collection of neural stimuli and endocrine and paracrine agents, which act either directly at membrane receptors of the parietal cell or indirectly through other regulatory cells of the gastric mucosa, as well as mechanic and chemic stimuli. In this review, after briefly introducing these points, we condense the current body of knowledge about the modulating action of adenosine on the pathophysiology of gastric acid secretion and update its significance based on recent findings in gastric mucosa and parietal cells in humans and animal models.

15.
Anal Chem ; 89(16): 8565-8573, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28703574

RESUMO

Imaging mass spectrometry (IMS) is quickly becoming a technique of reference to visualize the lipid distribution in tissue sections. Still, many questions remain open, and data analysis has to be optimized to avoid interpretation pitfalls. Here we analyze how the variation on the [Na+]/[K+] relative abundance affects the detection of lipids between sections of spinal cord of (uninjured) control rats and of models of spinal cord demyelination and traumatic contusion injury. The [M + Na]+/[M + K]+ adducts ratio remained approximately constant along transversal and longitudinal sections of spinal cord from control animals, but it strongly changed depending on the type of lesion. A substantial increase in the abundance of [M + Na]+ adducts was observed in samples from spinal cord with demyelination, while the intensity of the [M + K]+ adducts was stronger in those sections from mechanically injured spinal cords. Such changes masked the modifications in the lipid profile due to the injury and only after summing the signal intensity of all adducts and corresponding monoprotonated molecular ions of each detected lipid in a single variable, it was possible to unveil the real changes in the lipid profile due to the lesion. Such lipids included glycerophospholipids (both diacyl and aryl-acyl), sphingolipids, and nonpolar lipids (diacyl and triacylglycerols), which are the main lipid classes detected in positive-ion mode. Furthermore, the results demonstrate the sensitivity of the technique toward modification in tissue homeostasis and that the [M + Na]+/[M + K]+ ratio may be used to detect alterations in such homeostasis.


Assuntos
Modelos Animais de Doenças , Lipídeos/análise , Potássio/química , Sódio/química , Animais , Cátions/química , Masculino , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Traumatismos da Medula Espinal
16.
Molecules ; 22(4)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28417934

RESUMO

Adenosine is readily available to the glandular epithelium of the stomach. Formed continuously in intracellular and extracellular locations, it is notably produced from ATP released in enteric cotransmission. Adenosine analogs modulate chloride secretion in gastric glands and activate acid secretion in isolated parietal cells through A2B adenosine receptor (A2BR) binding. A functional link between surface A2BR and adenosine deaminase (ADA) was found in parietal cells, but whether this connection is a general feature of gastric mucosa cells is unknown. Here we examine whether A2BR is expressed at the membrane of histamine-producing enterochromaffin-like (ECL) cells, the major endocrine cell type in the oxyntic mucosa, and if so, whether it has a vicinity relationship with ADA. We used a highly homogeneous population of rabbit ECL cells (size 7.5-10 µm) after purification by elutriation centrifugation. The surface expression of A2BR and ADA proteins was assessed by flow cytometry and confocal microscopy. Our findings demonstrate that A2BR and ADA are partially coexpressed at the gastric ECL cell surface and that A2BR is functional, with regard to binding of adenosine analogs and adenylate cyclase activation. The physiological relevance of A2BR and ADA association in regulating histamine release is yet to be explained.


Assuntos
Adenosina Desaminase/genética , Celulas Tipo Enterocromafim/metabolismo , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Expressão Gênica , Receptor A2B de Adenosina/genética , Adenosina Desaminase/metabolismo , Animais , Biomarcadores , Citometria de Fluxo , Coelhos , Receptor A2B de Adenosina/metabolismo
17.
Oncotarget ; 8(64): 108181-108194, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29296233

RESUMO

Upregulation of Staphylococcal nuclease and tudor domain containing 1 (SND1) is linked to cancer progression and metastatic spread. Increasing evidence indicates that SND1 plays a role in lipid homeostasis. Recently, it has been shown that SND1-overexpressing hepatocellular carcinoma cells present an increased de novo cholesterol synthesis and cholesteryl ester accumulation. Here we reveal that SND1 oncogene is a novel target for SREBPs. Exposure of HepG2 cells to the cholesterol-lowering drug simvastatin or to a lipoprotein-deficient medium triggers SREBP-2 activation and increases SND1 promoter activity and transcript levels. Similar increases in SND1 promoter activity and mRNA are mimicked by overexpressing nuclear SREBP-2 through expression vector transfection. Conversely, SREBP-2 suppression with specific siRNA or the addition of cholesterol/25-hydroxycholesterol to cell culture medium reduces transcriptional activity of SND1 promoter and SND1 mRNA abundance. Chromatin immunoprecipitation assays and site-directed mutagenesis show that SREBP-2 binds to the SND1 proximal promoter in a region containing one SRE and one E-box motif which are critical for maximal transcriptional activity under basal conditions. SREBP-1, in contrast, binds exclusively to the SRE element. Remarkably, while ectopic expression of SREBP-1c or -1a reduces SND1 promoter activity, knocking-down of SREBP-1 enhances SND1 mRNA and protein levels but failed to affect SND1 promoter activity. These findings reveal that SREBP-2 and SREBP-1 bind to specific sites in SND1 promoter and regulate SND1 transcription in opposite ways; it is induced by SREBP-2 activating conditions and repressed by SREBP-1 overexpression. We anticipate the contribution of a SREBPs/SND1 pathway to lipid metabolism reprogramming of human hepatoma cells.

18.
ACS Chem Neurosci ; 7(5): 624-32, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27043994

RESUMO

Knowledge on the normal structure and molecular composition of the peripheral nerves is essential to understand their pathophysiology and to select the regeneration strategies after injury. However, the precise lipid composition of the normal peripheral nerve is still poorly known. Here, we present the first study of distribution of individual lipids in the mature sciatic nerve of rats by imaging mass spectrometry. Both positive and negative ion modes were used to detect, identify and in situ map 166 molecular species of mainly glycerophospholipids, sphingomyelins, sulfatides, and diacyl and triacylglycerols. In parallel, lipid extracts were analyzed by LC-MS/MS to verify and complement the identification of lipids directly from the whole tissue. Three anatomical regions were clearly identified by its differential lipid composition: the nerve fibers, the connective tissue and the adipose tissue that surrounds the nerve. Unexpectedly, very little variety of phosphatidylcholine (PC) species was found, being by far PC 34:1 the most abundant species. Also, a rich composition on sulfatides was detected in fibers, probably due to the important role they play in the myelin cover around axons, as well as an abundance of storage lipids in the adipose and connective tissues. The database of lipids here presented for each region and for the whole sciatic nerve is a first step toward understanding the variety of the peripheral nerves' lipidome and its changes associated with different diseases and mechanical injuries.


Assuntos
Lipídeos/química , Nervo Isquiático/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida/métodos , Metabolismo dos Lipídeos/fisiologia , Masculino , Ratos , Ratos Wistar , Nervo Isquiático/metabolismo
19.
Am J Physiol Cell Physiol ; 309(12): C823-34, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468208

RESUMO

Adenosine modulates different functional activities in many cells of the gastrointestinal tract; some of them are believed to be mediated by interaction with its four G protein-coupled receptors. The renewed interest in the adenosine A2B receptor (A2BR) subtype can be traced by studies in which the introduction of new genetic and chemical tools has widened the pharmacological and structural knowledge of this receptor as well as its potential therapeutic use in cancer and inflammation- or hypoxia-related pathologies. In the acid-secreting parietal cells of the gastric mucosa, the use of various radioligands for adenosine receptors suggested the presence of the A2 adenosine receptor subtype(s) on the cell surface. Recently, we confirmed A2BR expression in native, nontransformed parietal cells at rest by using flow cytometry and confocal microscopy. In this study, we show that A2BR is functional in primary rabbit gastric parietal cells, as indicated by the fact that agonist binding to A2BR increased adenylate cyclase activity and acid production. In addition, both acid production and radioligand binding of adenosine analogs to isolated cell membranes were potently blocked by selective A2BR antagonists, whereas ligands for A1, A2A, and A3 adenosine receptors failed to abolish activation. We conclude that rabbit gastric parietal cells possess functional A2BR proteins that are coupled to Gs and stimulate HCl production upon activation. Whether adenosine- and A2BR-mediated functional responses play a role in human gastric pathophysiology is yet to be elucidated.


Assuntos
Ácido Gástrico/metabolismo , Células Parietais Gástricas/metabolismo , Receptor A2B de Adenosina/metabolismo , Animais , Feminino , Citometria de Fluxo , Imunofluorescência , Masculino , Microscopia Confocal , Coelhos
20.
Nucleic Acids Res ; 43(22): 10673-88, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26323317

RESUMO

The NF-κB-inducible Staphylococcal nuclease and tudor domain-containing 1 gene (SND1) encodes a coactivator involved in inflammatory responses and tumorigenesis. While SND1 is known to interact with certain transcription factors and activate client gene expression, no comprehensive mapping of SND1 target genes has been reported. Here, we have approached this question by performing ChIP-chip assays on human hepatoma HepG2 cells and analyzing SND1 binding modulation by proinflammatory TNFα. We show that SND1 binds 645 gene promoters in control cells and 281 additional genes in TNFα-treated cells. Transcription factor binding site analysis of bound probes identified motifs for established partners and for novel transcription factors including HSF, ATF, STAT3, MEIS1/AHOXA9, E2F and p300/CREB. Major target genes were involved in gene expression and RNA metabolism regulation, as well as development and cellular metabolism. We confirmed SND1 binding to 21 previously unrecognized genes, including a set of glycerolipid genes. Knocking-down experiments revealed that SND1 deficiency compromises the glycerolipid gene reprogramming and lipid phenotypic responses to TNFα. Overall, our findings uncover an unexpected large set of potential SND1 target genes and partners and reveal SND1 to be a determinant downstream effector of TNFα that contributes to support glycerophospholipid homeostasis in human hepatocellular carcinoma during inflammation.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/fisiologia , Sítios de Ligação , Carcinoma Hepatocelular/metabolismo , Imunoprecipitação da Cromatina , Endonucleases , Regulação Neoplásica da Expressão Gênica , Glicerofosfolipídeos/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...