Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775665

RESUMO

Leaf surface conductance to water vapor and CO2 across the epidermis (gleaf) strongly determines rates of gas exchange. Thus, clarifying the drivers of gleaf has important implications for resolving mechanisms of photosynthetic productivity and leaf and plant responses and tolerance to drought. It is well recognized that gleaf is a function of the conductances of the stomata (gs) and of the epidermis + cuticle (gec). Yet, controversies have arisen around the relative roles of stomatal density (d) and size (s), fractional stomatal opening (α; aperture relative to maximum) and gec in determining gleaf. Resolving the importance of these drivers is critical across the range of leaf surface conductances, from strong stomatal closure under drought (gleaf, min), to typical opening for photosynthesis (gleaf, op), to maximum achievable opening (gleaf, max). We derived equations and analyzed a compiled database of published and measured data for approximately 200 species and genotypes. On average, within and across species, higher gleaf, min was determined ten times more strongly by α and gec than by d, and negligibly by s; higher gleaf, op was determined approximately equally by α (47%) than by stomatal anatomy (45% by d, and 8% by s), and negligibly by gec; and higher gleaf, max was determined entirely by d. These findings clarify how diversity in stomatal functioning arises from multiple structural and physiological causes with importance shifting with context. The rising importance of d relative to α, from gleaf, min to gleaf, op, enables even species with low gleaf, min, which can retain leaves through drought, to possess high d and thereby achieve rapid gas exchange in periods of high water availability.

2.
Plant Cell Environ ; 47(4): 1053-1069, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38017668

RESUMO

Southern California experienced unprecedented megadrought between 2012 and 2018. During this time, Malosma laurina, a chaparral species normally resilient to single-year intense drought, developed extensive mortality exceeding 60% throughout low-elevation coastal populations of the Santa Monica Mountains. We assessed the physiological mechanisms by which the advent of megadrought predisposed M. laurina to extensive shoot dieback and whole-plant death. We found that hydraulic conductance of stem xylem (Ks, native ) was reduced seven to 11-fold in dieback adult and resprout branches, respectively. Staining of stem xylem vessels revealed that dieback plants experienced 68% solid-blockage, explaining the reduction in water transport. Following Koch's postulates, persistent isolation of a microorganism in stem xylem of dieback plants but not healthy controls indicated that the causative agent of xylem blockage was an opportunistic endophytic fungus, Botryosphaeria dothidea. We inoculated healthy M. laurina saplings with fungal isolates and compared hyphal elongation rates under well-watered, water-deficit, and carbon-deficit treatments. Relative to controls, we found that both water deficit and carbon-deficit increased hyphal extension rates and the incidence of shoot dieback.


Assuntos
Secas , Água , Xilema/fisiologia , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA