Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Orthop ; 9(1): 3, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978644

RESUMO

BACKGROUND: Anterior cruciate ligament (ACL) injury rates continue to rise among youth involved in recreational and competitive athletics, requiring a better understanding of how the knee structurally and mechanically responds to activity during musculoskeletal growth. Little is understood about how anatomical risk factors for ACL injury (e.g., small ACL size, narrow intercondylar notch, and steep posterior tibial slope) develop and respond to increased physical activity throughout growth. We hypothesized that the ACL-complex of mice engaged in moderate to strenuous physical activity (i.e., endurance running) throughout late adolescence and young adulthood would positively functionally adapt to repetitive load perturbations. METHODS: Female C57BL6/J mice (8 weeks of age) were either provided free access to a standard cage wheel with added resistance (n = 18) or normal cage activity (n = 18), for a duration of 4 weeks. Daily distance ran, weekly body and food weights, and pre- and post-study body composition measures were recorded. At study completion, muscle weights, three-dimensional knee morphology, ACL cross-sectional area, and ACL mechanical properties of runners and nonrunners were quantified. Statistical comparisons between runners and nonrunners were assessed using a two-way analysis of variance and a Tukey multiple comparisons test, with body weight included as a covariate. RESULTS: Runners had larger quadriceps (p = 0.02) and gastrocnemius (p = 0.05) muscles, but smaller hamstring (p = 0.05) muscles, compared to nonrunners. Though there was no significant difference in ACL size (p = 0.24), it was 13% stronger in runners (p = 0.03). Additionally, both the posterior medial and lateral tibial slopes were 1.2 to 2.2 degrees flatter than those of nonrunners (p < 0.01). CONCLUSIONS: Positive functional adaptations of the knee joint to moderate to strenuous exercise in inbred mice offers hope that that some anatomical risk factors for ACL injury may be reduced through habitual physical activity. However, confirmation that a similar response to loading occurs in humans is needed.

2.
J Orthop Res ; 40(4): 826-837, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34191360

RESUMO

Despite poor graft integration among some patients that undergo an anterior cruciate ligament (ACL) reconstruction, there has been little consideration of the bone quality into which the ACL femoral tunnel is drilled and the graft is placed. Bone mineral density of the knee decreases following ACL injury. However, trabecular and cortical architecture differences between injured and non-injured femoral ACL entheses have not been reported. We hypothesize that injured femoral ACL entheses will show significantly less cortical and trabecular mass compared with non-injured controls. Femoral ACL enthesis explants from 54 female patients (13-25 years) were collected during ACL reconstructive surgery. Control explants (n = 12) were collected from seven donors (18-36 years). Injured (I) femoral explants differed from those of non-injured (NI) controls with significantly less (p ≤ 0.001) cortical volumetric bone mineral density (vBMD) (NI: 736.1-867.6 mg/cm3 ; I: 451.2-891.9 mg/cm3 ), relative bone volume (BV/TV) (NI: 0.674-0.867; I: 0.401-0.792) and porosity (Ct.Po) (NI: 0.133-0.326; I: 0.209-0.600). Injured explants showed significantly less trabecular vBMD (p = 0.013) but not trabecular BV/TV (p = 0.314), thickness (p = 0.412), or separation (p = 0.828). We found significantly less cortical bone within injured femoral entheses compared to NI controls. Lower cortical and trabecular bone mass within patient femoral ACL entheses may help explain poor ACL graft osseointegration outcomes in the young and may be a contributor to the osteolytic phenomenon that often occurs within the graft tunnel following ACL reconstruction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Feminino , Fêmur/cirurgia , Humanos , Articulação do Joelho/cirurgia , Masculino
3.
J Orthop Res ; 37(9): 1910-1919, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31042312

RESUMO

Postnatal development and the physiological loading response of the anterior cruciate ligament (ACL) complex (ACL proper, entheses, and bony morphology) is not well understood. We tested whether the ACL-complex of two inbred mouse strains that collectively encompass the musculoskeletal variation observed in humans would demonstrate significant morphological differences following voluntary cage-wheel running during puberty compared with normal cage activity controls. Female A/J and C57BL/6J (B6) 6-week-old mice were provided unrestricted access to a standard cage-wheel for 4 weeks. A/J-exercise mice showed a 6.3% narrower ACL (p = 0.64), and a 20.1% more stenotic femoral notch (p < 0.01) while B6-exercise mice showed a 12.3% wider ACL (p = 0.10), compared with their respective controls. Additionally, A/J-exercise mice showed a 5.3% less steep posterior medial tibial slope (p = 0.07) and an 8.8% less steep posterior lateral tibial slope (p = 0.07), while B6-exercise mice showed a 9.8% more steep posterior medial tibial slope (p < 0.01) than their respective controls. A/J-exercise mice also showed more reinforcement of the ACL tibial enthesis with a 20.4% larger area (p < 0.01) of calcified fibrocartilage distributed at a 29.2% greater depth (p = 0.02) within the tibial enthesis, compared with their controls. These outcomes suggest exercise during puberty significantly influences ACL-complex morphology and that inherent morphological differences between these mice, as observed in their less active genetically similar control groups, resulted in a divergent phenotypic outcome between mouse strains. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1910-1919, 2019.


Assuntos
Ligamento Cruzado Anterior/patologia , Condicionamento Físico Animal , Puberdade/fisiologia , Animais , Lesões do Ligamento Cruzado Anterior/etiologia , Feminino , Fêmur/patologia , Articulação do Joelho/patologia , Camundongos , Camundongos Endogâmicos C57BL , Tíbia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...