Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mar Sci ; 10: 1-1257015, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37822682

RESUMO

Coastal eutrophication is a prevalent threat to the healthy functioning of ecosystems globally. While degraded water quality can be detected by monitoring oxygen, nutrient concentrations, and algal abundance, establishing regulatory guidelines is complicated by a lack of baseline data (e.g., pre-Anthropocene). We use historical carbon and nitrogen isoscapes over ~300 years from sediment cores to reconstruct spatial and temporal changes in nutrient dynamics for a central California estuary, Elkhorn Slough, where development and agriculture dramatically enhanced nutrient inputs over the past century. We found strong contrasts between current sediment stable isotopes and those from the recent past, demonstrating shifts exceeding those in previously studied eutrophic estuaries and substantial increases in nutrient inputs. Comparisons of contemporary with historical isoscapes also revealed that nitrogen sources shifted from a historical marine-terrestrial gradient with higher δ15N near the inlet to amplified denitrification at the head and mouth of the modern estuary driven by increased N inputs. Geospatial analysis of historical data suggests that an increase in fertilizer application - rather than population growth or increases in the extent of cultivated land - is chiefly responsible for increasing nutrient loads during the 20th century. This study demonstrates the ability of isotopic and stoichiometric maps to provide important perspectives on long-term shifts and spatial patterns of nutrients that can be used to improve management of nutrient pollution.

2.
Remote Sens Appl ; 29: 1-11, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235064

RESUMO

Tidal wetlands are valued for the ecosystem services they provide yet are vulnerable to loss due to anthropogenic disturbances such as land conversion, hydrologic modifications, and the impacts of climate change, especially accelerating rates of sea level rise. To effectively manage tidal wetlands in face of multiple stressors, accurate studies of wetland extent and trends based on high-resolution imagery are needed. We provide salt marsh delineations for Barnegat Bay, New Jersey, by means of object-based image analysis of high-resolution aerial imagery and digital elevation models. We performed trends analyses of salt marsh extent from 1995 to 2015 and estimated drivers of marsh area change. We found that in 1995, 8830 ± 390 ha were covered with marsh vegetation, while in 2015 only 8180 ± 380 ha of salt marsh habitat remained. The resulting net loss rate of 0.37% yr-1 is equivalent to historic loss rates since the 1970s, indicating that despite regionally accelerating relative sea level rise and purported eutrophication, salt marsh loss rates at Barnegat Bay remain steady. The main drivers of salt marsh loss are excavations for mosquito control (409 ha), edge erosion (303 ha) and ponding (240 ha). Upland migration of salt marsh did not completely mitigate these losses but accounted for a gain of 147 ha of tidal marsh habitat. The methodology presented herein yielded accurate salt marsh delineations (>90%) and trend detection (85%), outperforming low-resolution wetland delineations used in coastal management. This study demonstrates the suitability of high-resolution imagery for the detection of open water features. For the purposes of salt marsh change detection and the identification of change drivers, management and conservation agencies should make use of high-resolution imagery whenever feasible.

3.
Water (Basel) ; 15(1): 1-20, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36798655

RESUMO

The effects of nonpoint source nutrients on estuaries can be difficult to pinpoint, with researchers often using indicator species, monitoring, and models to detect influence and change. Here, we made stable isotope measurements of nitrogen and carbon in sediment, water column particulates, primary producers, and consumers at 35 stations in the reportedly eutrophic Barnegat Bay (New Jersey) to assess N sources and processing pathways. Combined with water quality and hydrological data, our C and N isoscapes revealed four distinct geographic zones with diverging isotopic baselines, indicating variable nutrient sources and processing pathways. Overall, the carbon stable isotopes δ13C) reflected the terrestrial-marine gradient with the most depleted values in the urban and poorly flushed north of the estuary to the most enriched values in the salt marsh-dominated south. In contrast, the nitrogen stable isotope values δ15N) were most enriched near the oceanic inlets and were consistent with offshore δ15N values in particulate organic matter. Several biogeochemical processes likely alter δ15N, but the relatively lower δ15N values associated with the most urbanized area indicate that anthropogenic runoff is not a dominant N source to this area. Our findings stand in contrast to previous studies of similar estuaries, as δ15N signatures of biota in this system are inversely correlated to population density and nutrient concentrations. Further, our analyses of archival plant (Spartina sp., Phragmites australis) and shell (Geukensia demissa, Ilyanassa obsoleta) samples collected between 1880 and 2020 indicated that δ15N values have decreased over time, particularly in the consumers. Overall, we find that water quality issues appear to be most acute in the poorly flushed parts of Barnegat Bay and emphasize the important role that oceanic exchange plays in water quality and associated estuarine food webs in the lagoon.

4.
Ecol Indic ; 142: 1-12, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36969322

RESUMO

One of the goals of coastal ecological research is to describe, quantify and predict human effects on coastal ecosystems. Broad cross-systems assessments to classify ecosystem status or condition have been developed, but are not updated frequently, likely because a lot of information and effort is needed to implement them. Such assessments could be more useful if the probability of being in a class indicating status or condition could be predicted using widely available data and information, providing a useful way to interpret changes in underlying predictors by considering their expected impact on ecosystem condition. To illustrate a possible approach, we used chlorophyll-a as an indicator of condition, in place of the intended comprehensive condition assessment. We demonstrated a predictive approach starting with a random forest model to inform variable selection, then used a Bayesian multilevel ordered categorical regression to quantify a coastal trophic state index and predict system status. We initially fit the model using non-informative priors to water quality data (total nitrogen and phosphorus, dissolved inorganic nitrogen and phosphorus, secchi depth) from 2010 and a regional factor. We then updated the model using prior distributions based on posterior parameter distributions from the initial fit and data from 2015. The Bayesian model demonstrates an intuitive way to update a model or analysis with new data while retaining the benefit of prior knowledge and maintaining flexibility to consider new kinds of information. To illustrate how the model could be used, we applied our developed trophic state index and classification to a time series of water quality data from Boston Harbor, a coastal ecosystem that has undergone significant changes in nutrient inputs. The analysis shows how water quality status and trends in Boston Harbor can be understood in the comparative ecological context provided by data from estuaries around the continental US and illustrates how the analytical approach could be used as an interpretive tool by non-practitioners of Bayesian statistics as well as a framework for further model development and analysis.

5.
Front For Glob Change ; 4: 1-14, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35118374

RESUMO

Mangroves sequester significant quantities of organic carbon (C) because of high rates of burial in the soil and storage in biomass. We estimated mangrove forest C storage and accumulation rates in aboveground and belowground components among five sites along an urbanization gradient in the San Juan Bay Estuary, Puerto Rico. Sites included the highly urbanized and clogged Caño Martin Peña in the western half of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part. Radiometrically dated cores were used to determine sediment accretion and soil C storage and burial rates. Measurements of tree dendrometers coupled with allometric equations were used to estimate aboveground biomass. Estuary-wide mangrove forest C storage and accumulation rates were estimated using interpolation methods and coastal vegetation cover data. In recent decades (1970-2016), the highly urbanized Martin Peña East (MPE) site with low flushing had the highest C storage and burial rates among sites. The MPE soil carbon burial rate was over twice as great as global estimates. Mangrove forest C burial rates in recent decades were significantly greater than historic decades (1930-1970) at Cañno Martin Peña and Piñones. Although MPE and Piñones had similarly low flushing, the landscape settings (clogged canal vs forest reserve) and urbanization (high vs low) were different. Apparently, not only urbanization, but site-specific flushing patterns, landscape setting, and soil fertility affected soil C storage and burial rates. There was no difference in C burial rates between historic and recent decades at the San José and La Torrecilla lagoons. Mangrove forests had soil C burial rates ranging from 88 g m-2 y-1 at the San José lagoon to 469 g m-2 y-1 at the MPE in recent decades. Watershed anthropogenic CO2 emissions (1.56 million Mg C y-1) far exceeded the annual mangrove forest C storage rates (aboveground biomass plus soils: 17,713 Mg C y-1). A combination of maintaining healthy mangrove forests and reducing anthropogenic emissions might be necessary to mitigate greenhouse gas emissions in urban, tropical areas.

6.
Front For Glob Change ; 4: 1-765896, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-35059638

RESUMO

Tropical mangrove forests have been described as "coastal kidneys," promoting sediment deposition and filtering contaminants, including excess nutrients. Coastal areas throughout the world are experiencing increased human activities, resulting in altered geomorphology, hydrology, and nutrient inputs. To effectively manage and sustain coastal mangroves, it is important to understand nitrogen (N) storage and accumulation in systems where human activities are causing rapid changes in N inputs and cycling. We examined N storage and accumulation rates in recent (1970 - 2016) and historic (1930 - 1970) decades in the context of urbanization in the San Juan Bay Estuary (SJBE, Puerto Rico), using mangrove soil cores that were radiometrically dated. Local anthropogenic stressors can alter N storage rates in peri-urban mangrove systems either directly by increasing N soil fertility or indirectly by altering hydrology (e.g., dredging, filling, and canalization). Nitrogen accumulation rates were greater in recent decades than historic decades at Piñones Forest and Martin Peña East. Martin Peña East was characterized by high urbanization, and Piñones, by the least urbanization in the SJBE. The mangrove forest at Martin Peña East fringed a poorly drained canal and often received raw sewage inputs, with N accumulation rates ranging from 17.7 to 37.9 g -2 y-1 in recent decades. The Piñones Forest was isolated and had low flushing, possibly exacerbated by river damming, with N accumulation rates ranging from 18.6 to 24.2 g -2 y-1 in recent decades. Nearly all (96.3%) of the estuary-wide mangrove N (9.4 Mg ha-1) was stored in the soils with 7.1 Mg ha-1 sequestered during 1970-2017 (0-18 cm) and 2.3 Mg ha-1 during 1930-1970 (19-28 cm). Estuary-wide mangrove soil N accumulation rates were over twice as great in recent decades (0.18 ± 0.002 Mg ha-1y-1) than historically (0.08 ± 0.001 Mg ha-1y-1). Nitrogen accumulation rates in SJBE mangrove soils in recent times were twofold larger than the rate of human-consumed food N that is exported as wastewater (0.08 Mg ha-1 y-1), suggesting the potential for mangroves to sequester human-derived N. Conservation and effective management of mangrove forests and their surrounding watersheds in the Anthropocene are important for maintaining water quality in coastal communities throughout tropical regions.

7.
J Geophys Res Biogeosci ; 125(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32426203

RESUMO

Tropical urban estuaries are severely understudied. Little is known about the basic biogeochemical cycles and dominant ecosystem processes in these waterbodies, which are often low-lying and heavily modified. The San Juan Bay Estuary (SJBE) in San Juan, Puerto Rico is an example of such a system. Over the past 80 years, a portion of the estuary has filled in, changing the hydrodynamics and negatively affecting water quality. Here we sought to document these changes using ecological and biogeochemical measurements of surface sediments and bivalves. Measurements of sediment physical characteristics, organic matter content, and stable isotope ratios (δ13C, δ15N, δ34S) illustrated the effects of the closure of the Caño Martín Peña (CMP) on the hydrology and water quality of the enclosed and semienclosed parts of the estuary. The nitrogen stable isotope (δ15N) values were lowest in the CMP, the stretch of the SJBE that is characterized by waters with low dissolved oxygen and high fecal coliform concentrations. Despite this, the results of this study indicate that nitrogen (N) contributions from N-fixing, sulfate-reducing microbes may meet or even exceed contributions from urban runoff and sewage. While the importance of sulfate reducers in contributing N to mangrove ecosystems is well documented, this is the first indication that such processes could be dominant in an intensely urban system. It also underscores just how little we know about tropical coastal ecosystems in densely populated areas throughout the globe.

8.
Mar Pollut Bull ; 150: 110745, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31784266

RESUMO

An experiment was conducted to examine the fractionation of nitrogen stable isotopes in a continuous culture system containing field collected estuarine phytoplankton and blue mussels, Mytilus edulis. Nitrate and phosphate were added to culture vessels at concentrations above ambient levels and nitrogen isotope ratios (δ15N) were measured in particulate matter (PM) and blue mussels over the course of the 15-day experiment. The added nutrients resulted in large productivity and chlorophyll increases in the system. Study results indicate that rapid and significant nitrogen isotope fractionation can occur during incorporation by phytoplankton grown under conditions of excess dissolved inorganic nitrogen, as shown by δ15N values depleted by as much as 9‰ in PM from the higher nutrient treatments. These lower δ15N values were also reflected in mussels exposed to culture vessels effluents. Therefore, nitrogen concentration needs to be considered when using δ15N values in biota as indicators of anthropogenic nitrogen inputs.


Assuntos
Monitoramento Ambiental , Mytilus edulis , Nitrogênio/análise , Poluentes da Água/análise , Animais , Aquicultura , Isótopos de Nitrogênio , Fitoplâncton
9.
Data Brief ; 21: 466-472, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30364832

RESUMO

We present four datasets that provide information on primary production, nitrogen (N) uptake and allocation in two salt marsh grasses, short-form Spartina alterniflora and Distichlis spicata. These four datasets were generated during a month-long stable isotope (15N) tracer study described in the companion manuscript (Hill et al., 2018). They include an allometry dataset containing mass and height data for individual plants harvested from Colt State Park, Bristol, Rhode Island and used to nondestructively estimate plant masses. A second dataset contains weekly stem height measurements collected over the course of the 15N tracer study. Also included are high resolution data from 49 vegetated compartments (leaves, stems, fine/coarse roots, rhizomes) and bulk sediment depth intervals, reporting the mass, carbon and N concentrations, and stable isotope ratios measured following the harvest of cores over time. Additionally, we provide a complementary dataset with estimates of microbial removal from potential and ambient denitrification enzyme assays. These data, along with source code used in their analysis, are compiled in the NitrogenUptake2016 R package available from the Comprehensive R Archive Network.

10.
Mar Environ Res ; 134: 109-120, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29373137

RESUMO

Roughly eight million people live on Long Island, including Brooklyn and Queens, and despite improvements in wastewater treatment, nearly all its coastal waterbodies are impaired by excessive nitrogen. We used nutrient stoichiometry and stable isotope ratios in estuarine biota and soils to identify water pollution hot spots and compare among potential indicators. We found strong gradients in δ15N values, which were correlated with watershed land cover, population density, and wastewater discharges. Weaker correlations were found for δ13C values and nutrient stoichiometric ratios. Structural equation modeling identified contrasts between western Long Island, where δ15N values depended on watershed population density, and eastern Long Island where δ15N values reflected agriculture and sewage discharges. These results illustrate the use of stable isotopes as water quality indicators, and establish a baseline against which the efficacy of strategies to reduce nutrients can be measured.


Assuntos
Monitoramento Ambiental , Estuários , New York , Nitrogênio , Isótopos de Nitrogênio , Esgotos
11.
J Exp Mar Biol Ecol ; 21: 466-472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31296971

RESUMO

Salt marshes have the potential to intercept nitrogen that could otherwise impact coastal water quality. Salt marsh plants play a central role in nutrient interception by retaining N in above- and belowground tissues. We examine N uptake and allocation in two dominant salt marsh plants, short-form Spartina alterniflora and Distichlis spicata. Nitrogen uptake was measured using 15N tracer experiments conducted over a four-week period, supplemented with stem-level growth rates, primary production, and microbial denitrification assays. By varying experiment duration, we identify the importance of a rarely-measured aspect of experimental design in 15N tracer studies. Experiment duration had a greater impact on quantitative N uptake estimates than primary production or stem-level relative growth rates. Rapid initial scavenging of added 15N caused apparent nitrogen uptake rates to decline by a factor of two as experiment duration increased from one week to one month, although each experiment shared the qualitative conclusion that Distichlis roots scavenged N approximately twice as rapidly as Spartina. We estimate total N uptake into above- and belowground tissues as 154 and 277 mg N·m-2·d-1 for Spartina and Distichlis, respectively. Driving this pattern were higher N content in Distichlis leaves and belowground tissue and strong differences in primary production; Spartina and Distichlis produced 8.8 and 14.7 g biomass·m-2·d-1. Denitrification potentials were similar in sediment associated with both species, but the strong species-specific difference in N uptake suggests that Distichlis-dominated marshes are likely to intercept more N from coastal waters than are short-form Spartina marshes. The data and source code for this manuscript are available as an R package from https://github.com/troyhill/NitrogenUptake2016.

12.
Ecol Appl ; 21(5): 1708-17, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21830712

RESUMO

Because of longer residence times and limited mixing in coastal lagoons, the impacts of anthropogenic nutrient loading to lagoon food webs are often more pronounced than in other coastal ecosystems. For these reasons, many lagoons also provide an excellent environment for the deposition and accumulation of organic matter (OM). Sediment cores were retrieved from three North African lagoons to provide records of recent environmental changes. We measured percentage nitrogen (%N), nitrogen stable isotope values (delta15N), and percentage organic matter (%OM), and we used radiometric dating techniques (210Pb, 137Cs) to examine the evidence for the intensification of upstream agricultural practices in sediment cores from Lake Manzala (Egypt), Ghar El Melh Lagoon (Tunisia), and Lagune de Nador (Morocco). With the exception of one core collected near a sewage outfall, sediments from Lake Manzala clearly reflected the impact of agricultural intensification following completion of the Aswan High Dam and delta barrages in the mid-1960s to early 1970s. Both %N and %OM more than doubled in three Manzala sediment cores, and delta15N values declined from 5 per thousand to < 1 per thousand. These changes reflect the increasing use of synthetic fertilizers (delta15N approximately 0 per thousand) from the 1960s to the present. Sediments from Ghar El Melh show a similar trend, with %N more than tripling, %OM increasing by 50%, and delta15N declining from 6 per thousand to 2 per thousand since 1965. These changes are consistent with the increasing use of water from a nearby river for crop irrigation and agricultural fertilizer use. Lagune de Nador receives relatively little agricultural drainage water, and core data did not show the same trends as Manzala and Ghar El Melh. Overall, the sediment core data from these systems reflect environmental shifts in the quantity, quality, and isotope signature of the deposited organic matter and confirm the concerns of local scientists and environmental managers that eutrophication has had dramatic impacts on the coastal ecosystems, particularly at the Egyptian and Tunisian sites.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Sedimentos Geológicos/química , Nitrogênio/química , África do Norte , Atividades Humanas , Mar Mediterrâneo , Fatores de Tempo
13.
Mar Pollut Bull ; 62(4): 672-80, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21353254

RESUMO

When nutrients impact estuarine water quality, scientists and managers instinctively focus on quantifying and controlling land-based sources. However, in Greenwich Bay, RI, the estuary opens onto a larger and more intensively fertilized coastal water body (Narragansett Bay). Previous inventories of nitrogen (N) inputs to Greenwich Bay found that N inputs from Narragansett Bay exceeded those from the local watershed, suggesting that recent efforts to reduce local watershed N loads may have little effect on estuarine water quality. We used stable isotopes of N to characterize watershed and Narragansett Bay N sources as well as the composition of primary producers and consumers throughout Greenwich Bay. Results were consistent with previous assessments of the importance of N inputs to Greenwich Bay from Narragansett Bay. As multiple N sources contribute to estuarine water quality, effective management requires attention to individual sources commensurate with overall magnitude, regardless of the political complications that may entail.


Assuntos
Conservação dos Recursos Naturais/métodos , Nitrogênio/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Amônia/análise , Oceano Atlântico , Biodiversidade , Monitoramento Ambiental , Eutrofização , Ciclo do Nitrogênio , Rhode Island , Poluição Química da Água/estatística & dados numéricos
14.
Proc Natl Acad Sci U S A ; 106(5): 1364-7, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19164510

RESUMO

The highly productive coastal Mediterranean fishery off the Nile River delta collapsed after the completion of the Aswan High Dam in 1965. But the fishery has been recovering dramatically since the mid-1980s, coincident with large increases in fertilizer application and sewage discharge in Egypt. We use stable isotopes of nitrogen (delta(15)N) to demonstrate that 60%-100% of the current fishery production may be from primary production stimulated by nutrients from fertilizer and sewage runoff. Although the establishment of the dam put Egypt in an ideal position to observe the impact of rapid increases in nutrient loading on coastal productivity in an extremely oligotrophic sea, the Egyptian situation is not unique. Such anthropogenically enhanced fisheries also may occur along the northern rim of the Mediterranean and offshore of some rapidly developing tropical countries, where nutrient concentrations in the coastal waters were previously very low.


Assuntos
Pesqueiros , Animais , Isótopos de Carbono/análise , Egito , Fertilizantes , Peixes , Mar Mediterrâneo , Isótopos de Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...