Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 226(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38217871

RESUMO

PRDM9-mediated reproductive isolation was first described in the progeny of Mus musculus musculus (MUS) PWD/Ph and Mus musculus domesticus (DOM) C57BL/6J inbred strains. These male F1 hybrids fail to complete chromosome synapsis and arrest meiosis at prophase I, due to incompatibilities between the Prdm9 gene and hybrid sterility locus Hstx2. We identified 14 alleles of Prdm9 in exon 12, encoding the DNA-binding domain of the PRDM9 protein in outcrossed wild mouse populations from Europe, Asia, and the Middle East, 8 of which are novel. The same allele was found in all mice bearing introgressed t-haplotypes encompassing Prdm9. We asked whether 7 novel Prdm9 alleles in MUS populations and the t-haplotype allele in 1 MUS and 3 DOM populations induce Prdm9-mediated reproductive isolation. The results show that only combinations of the dom2 allele of DOM origin and the MUS msc1 allele ensure complete infertility of intersubspecific hybrids in outcrossed wild populations and inbred mouse strains examined so far. The results further indicate that MUS mice may share the erasure of PRDM9msc1 binding motifs in populations with different Prdm9 alleles, which implies that erased PRDM9 binding motifs may be uncoupled from their corresponding Prdm9 alleles at the population level. Our data corroborate the model of Prdm9-mediated hybrid sterility beyond inbred strains of mice and suggest that sterility alleles of Prdm9 may be rare.


Assuntos
Infertilidade , Animais , Humanos , Masculino , Camundongos , Éxons , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Infertilidade/genética , Camundongos Endogâmicos C57BL , Fenótipo , Zinco
2.
Genome Biol Evol ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198800

RESUMO

Recombination is responsible for breaking up haplotypes, influencing genetic variability, and the efficacy of selection. Bird genomes lack the protein PR domain-containing protein 9, a key determinant of recombination dynamics in most metazoans. Historical recombination maps in birds show an apparent stasis in positioning recombination events. This highly conserved recombination pattern over long timescales may constrain the evolution of recombination in birds. At the same time, extensive variation in recombination rate is observed across the genome and between different species of birds. Here, we characterize the fine-scale historical recombination map of an iconic migratory songbird, the Eurasian blackcap (Sylvia atricapilla), using a linkage disequilibrium-based approach that accounts for population demography. Our results reveal variable recombination rates among and within chromosomes, which associate positively with nucleotide diversity and GC content and negatively with chromosome size. Recombination rates increased significantly at regulatory regions but not necessarily at gene bodies. CpG islands are associated strongly with recombination rates, though their specific position and local DNA methylation patterns likely influence this relationship. The association with retrotransposons varied according to specific family and location. Our results also provide evidence of heterogeneous intrachromosomal conservation of recombination maps between the blackcap and its closest sister taxon, the garden warbler. These findings highlight the considerable variability of recombination rates at different scales and the role of specific genomic features in shaping this variation. This study opens the possibility of further investigating the impact of recombination on specific population-genomic features.


Assuntos
Genômica , Aves Canoras , Animais , Aves Canoras/genética , Ilhas de CpG , Metilação de DNA , Recombinação Genética
3.
Sci Rep ; 13(1): 16471, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777595

RESUMO

Transposable elements (TEs) are mobile genetic elements that can move around the genome, and as such are a source of genomic variability. Based on their characteristics we can annotate TEs within the host genome and classify them into specific TE types and families. The increasing number of available high-quality genome references in recent years provides an excellent resource that will enhance the understanding of the role of recently active TEs on genetic variation and phenotypic evolution. Here we showcase the use of a high-quality TE annotation to understand the distinct effect of recent and ancient TE insertions on the evolution of genomic variation, within our study species the Eurasian blackcap (Sylvia atricapilla). We investigate how these distinct TE categories are distributed along the genome and evaluate how their coverage across the genome is correlated with four genomic features: recombination rate, gene coverage, CpG island coverage and GC content. We found within the recent TE insertions an accumulation of LTRs previously not seen in birds. While the coverage of recent TE insertions was negatively correlated with both GC content and recombination rate, the correlation with recombination rate disappeared and turned positive for GC content when considering ancient TE insertions.


Assuntos
Genoma , Retroelementos , Humanos , Retroelementos/genética , Genômica , Sequências Repetidas Terminais/genética , Ilhas de CpG , Elementos de DNA Transponíveis/genética , Evolução Molecular
4.
Curr Top Dev Biol ; 151: 27-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36681473

RESUMO

Recent discoveries have advanced our understanding of recombination initiation beyond the placement of double-stranded DNA breaks (DSBs) from germline replication timing to the dynamic reorganization of chromatin, and defined critical players of recombination initiation. This article focuses on recombination initiation in mammals utilizing the PRDM9 protein to orchestrate crucial stages of meiotic recombination initiation by interacting with the local DNA environment and several protein complexes. The Pioneer Complex with the SNF2-type chromatin remodeling enzyme HELLS, exposes PRDM9-bound DNA. At the same time, a Compass-Complex containing EWSR1, CXXC1, CDYL, EHMT2 and PRDM9 facilitates the association of putative hotspot sites in DNA loops with the chromosomal axis where DSB-promoting complexes are located, and DSBs are catalyzed by the SPO11/TOPOVIBL complex. Finally, homology search is facilitated at PRDM9-directed sites by ANKRD31. The Reader-Writer system consists of PRDM9 writing characteristic histone methylation signatures, which are read by ZCWPW1, promoting efficient homology engagement.


Assuntos
Cromatina , DNA , Animais , DNA/metabolismo , Cromossomos , Recombinação Homóloga , Quebras de DNA de Cadeia Dupla , Meiose/genética , Mamíferos/genética
5.
BMC Genomics ; 23(1): 212, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296233

RESUMO

BACKGROUND: PRDM9 is a key regulator of meiotic recombination in most metazoans, responsible for reshuffling parental genomes. During meiosis, the PRDM9 protein recognizes and binds specific target motifs via its array of C2H2 zinc-fingers encoded by a rapidly evolving minisatellite. The gene coding for PRDM9 is the only speciation gene identified in vertebrates to date and shows high variation, particularly in the DNA-recognizing positions of the zinc-finger array, within and between species. Across all vertebrate genomes studied for PRDM9 evolution, only one genome lacks variability between repeat types - that of the North Pacific minke whale. This study aims to understand the evolution and diversity of Prdm9 in minke whales, which display the most unusual genome reference allele of Prdm9 so far discovered in mammals. RESULTS: Minke whales possess all the features characteristic of PRDM9-directed recombination, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF) with evidence of rapid evolution, particularly at DNA-recognizing positions that evolve under positive diversifying selection. Seventeen novel PRDM9 variants were identified within the Antarctic minke whale species, plus a single distinct PRDM9 variant in Common minke whales - shared across North Atlantic and North Pacific minke whale subspecies boundaries. CONCLUSION: The PRDM9 ZnF array evolves rapidly, in minke whales, with at least one DNA-recognizing position under positive selection. Extensive PRDM9 diversity is observed, particularly in the Antarctic in minke whales. Common minke whales shared a specific Prdm9 allele across subspecies boundaries, suggesting incomplete speciation by the mechanisms associated with PRDM9 hybrid sterility.


Assuntos
Baleia Anã , Alelos , Animais , Histona-Lisina N-Metiltransferase/genética , Meiose , Baleia Anã/genética , Dedos de Zinco/genética
6.
Sci Rep ; 11(1): 15548, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330944

RESUMO

Intelectins are a family of multimeric secreted proteins that bind microbe-specific glycans. Both genetic and functional studies have suggested that intelectins have an important role in innate immunity and are involved in the etiology of various human diseases, including inflammatory bowel disease. Experiments investigating the role of intelectins in human disease using mouse models are limited by the fact that there is not a clear one-to-one relationship between intelectin genes in humans and mice, and that the number of intelectin genes varies between different mouse strains. In this study we show by gene sequence and gene expression analysis that human intelectin-1 (ITLN1) has multiple orthologues in mice, including a functional homologue Itln1; however, human intelectin-2 has no such orthologue or homologue. We confirm that all sub-strains of the C57 mouse strain have a large deletion resulting in retention of only one intelectin gene, Itln1. The majority of laboratory strains have a full complement of six intelectin genes, except CAST, SPRET, SKIVE, MOLF and PANCEVO strains, which are derived from different mouse species/subspecies and encode different complements of intelectin genes. In wild mice, intelectin deletions are polymorphic in Mus musculus castaneus and Mus musculus domesticus. Further sequence analysis shows that Itln3 and Itln5 are polymorphic pseudogenes due to premature truncating mutations, and that mouse Itln1 has undergone recent adaptive evolution. Taken together, our study shows extensive diversity in intelectin genes in both laboratory and wild-mice, suggesting a pattern of birth-and-death evolution. In addition, our data provide a foundation for further experimental investigation of the role of intelectins in disease.


Assuntos
Citocinas/genética , Lectinas/genética , Animais , Evolução Molecular , Proteínas Ligadas por GPI/genética , Humanos , Laboratórios , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , RNA Mensageiro/genética
7.
Mol Biol Evol ; 37(12): 3423-3438, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32642764

RESUMO

The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.


Assuntos
Introgressão Genética , Histona-Lisina N-Metiltransferase/genética , Infertilidade/genética , Camundongos/genética , Isolamento Reprodutivo , Animais , Feminino , Masculino , Meiose , Filogeografia
8.
Genetics ; 213(3): 1047-1063, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31562180

RESUMO

F1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (chromosome X: 66.51-69.21 Mb). The newly defined Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and controls meiotic chromosome synapsis and meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-defined DNA double-strand-break hotspots. To search for structural anomalies as a possible cause of recombination suppression, we used optical mapping and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. This observation together with the absence of a strong sterility phenotype in Fmr1 neighbor (Fmr1nb) null mutants support the role of microRNA as a likely candidate for Hstx2.


Assuntos
Genes Modificadores , Histona-Lisina N-Metiltransferase/genética , Infertilidade Masculina/genética , Polimorfismo Genético , Animais , Recombinação Homóloga , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Cromossomo X/genética
9.
Wellcome Open Res ; 3: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682616

RESUMO

Background: The CCL3L1-CCR5 signaling axis is important in a number of inflammatory responses, including macrophage function, and T-cell-dependent immune responses. Small molecule CCR5 antagonists exist, including the approved antiretroviral drug maraviroc, and therapeutic monoclonal antibodies are in development. Repositioning of drugs and targets into new disease areas can accelerate the availability of new therapies and substantially reduce costs. As it has been shown that drug targets with genetic evidence supporting their involvement in the disease are more likely to be successful in clinical development, using genetic association studies to identify new target repurposing opportunities could be fruitful. Here we investigate the potential of perturbation of the CCL3L1-CCR5 axis as treatment for respiratory disease. Europeans typically carry between 0 and 5 copies of CCL3L1 and this multi-allelic variation is not detected by widely used genome-wide single nucleotide polymorphism studies.  Methods: We directly measured the complex structural variation of CCL3L1 using the Paralogue Ratio Test and imputed (with validation) CCR5del32 genotypes in 5,000 individuals from UK Biobank, selected from the extremes of the lung function distribution, and analysed DNA and RNAseq data for CCL3L1 from the 1000 Genomes Project. Results: We confirmed the gene dosage effect of CCL3L1 copy number on CCL3L1 mRNA expression levels.  We found no evidence for association of CCL3L1 copy number or CCR5del32 genotype with lung function. Conclusions: These results suggest that repositioning CCR5 antagonists is unlikely to be successful for the treatment of airflow obstruction.

10.
Bioinformatics ; 32(16): 2554-5, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153632

RESUMO

MOTIVATION: In many organisms, including humans, recombination clusters within recombination hotspots. The standard method for de novo detection of recombinants at hotspots is sperm typing. This relies on allele-specific PCR at single nucleotide polymorphisms. Designing allele-specific primers by hand is time-consuming. We have therefore written a package to support hotspot detection and analysis. RESULTS: hotspot consists of four programs: asp looks up SNPs and designs allele-specific primers; aso constructs allele-specific oligos for mapping recombinants; xov implements a maximum-likelihood method for estimating the crossover rate; six, finally, simulates typing data. AVAILABILITY AND IMPLEMENTATION: hotspot is written in C. Sources are freely available under the GNU General Public License from http://github.com/evolbioinf/hotspot/ CONTACT: haubold@evolbio.mpg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Recombinação Genética , Software , Espermatozoides , Alelos , Humanos , Funções Verossimilhança , Masculino
11.
PLoS Genet ; 10(2): e1004106, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516398

RESUMO

Meiotic recombination ensures the correct segregation of homologous chromosomes during gamete formation and contributes to DNA diversity through both large-scale reciprocal crossovers and very localised gene conversion events, also known as noncrossovers. Considerable progress has been made in understanding factors such as PRDM9 and SNP variants that influence the initiation of recombination at human hotspots but very little is known about factors acting downstream. To address this, we simultaneously analysed both types of recombinant molecule in sperm DNA at six highly active hotspots, and looked for disparity in the transmission of allelic variants indicative of any cis-acting influences. At two of the hotspots we identified a novel form of biased transmission that was exclusive to the noncrossover class of recombinant, and which presumably arises through differences between crossovers and noncrossovers in heteroduplex formation and biased mismatch repair. This form of biased gene conversion is not predicted to influence hotspot activity as previously noted for SNPs that affect recombination initiation, but does constitute a powerful and previously undetected source of recombination-driven meiotic drive that by extrapolation may affect thousands of recombination hotspots throughout the human genome. Intriguingly, at both of the hotspots described here, this drive favours strong (G/C) over weak (A/T) base pairs as might be predicted from the well-established correlations between high GC content and recombination activity in mammalian genomes.


Assuntos
Troca Genética , Meiose/genética , Recombinação Genética , Espermatozoides/crescimento & desenvolvimento , Alelos , Animais , Genoma Humano , Células Germinativas/crescimento & desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Ácidos Nucleicos Heteroduplexes/genética , Polimorfismo de Nucleotídeo Único , Espermatozoides/metabolismo
12.
PLoS One ; 9(1): e84192, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404154

RESUMO

Lung function measures are heritable, predict mortality and are relevant in diagnosis of chronic obstructive pulmonary disease (COPD). COPD and asthma are diseases of the airways with major public health impacts and each have a heritable component. Genome-wide association studies of SNPs have revealed novel genetic associations with both diseases but only account for a small proportion of the heritability. Complex copy number variation may account for some of the missing heritability. A well-characterised genomic region of complex copy number variation contains beta-defensin genes (DEFB103, DEFB104 and DEFB4), which have a role in the innate immune response. Previous studies have implicated these and related genes as being associated with asthma or COPD. We hypothesised that copy number variation of these genes may play a role in lung function in the general population and in COPD and asthma risk. We undertook copy number typing of this locus in 1149 adult and 689 children using a paralogue ratio test and investigated association with COPD, asthma and lung function. Replication of findings was assessed in a larger independent sample of COPD cases and smoking controls. We found evidence for an association of beta-defensin copy number with COPD in the adult cohort (OR = 1.4, 95%CI:1.02-1.92, P = 0.039) but this finding, and findings from a previous study, were not replicated in a larger follow-up sample(OR = 0.89, 95%CI:0.72-1.07, P = 0.217). No robust evidence of association with asthma in children was observed. We found no evidence for association between beta-defensin copy number and lung function in the general populations. Our findings suggest that previous reports of association of beta-defensin copy number with COPD should be viewed with caution. Suboptimal measurement of copy number can lead to spurious associations. Further beta-defensin copy number measurement in larger sample sizes of COPD cases and children with asthma are needed.


Assuntos
Asma/genética , Variações do Número de Cópias de DNA , Doença Pulmonar Obstrutiva Crônica/genética , População Branca/genética , beta-Defensinas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/fisiopatologia , Estudos de Casos e Controles , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
13.
BMC Infect Dis ; 13: 536, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24219137

RESUMO

BACKGROUND: The role of copy number variation of the CCL3L1 gene, encoding MIP1α, in contributing to the host variation in susceptibility and response to HIV infection is controversial. Here we analyse a sub-Saharan African cohort from Tanzania and Ethiopia, two countries with a high prevalence of HIV-1 and a high co-morbidity of HIV with tuberculosis. METHODS: We use a form of quantitative PCR called the paralogue ratio test to determine CCL3L1 gene copy number in 1134 individuals and validate our copy number typing using array comparative genomic hybridisation and fiber-FISH. RESULTS: We find no significant association of CCL3L1 gene copy number with HIV load in antiretroviral-naïve patients prior to initiation of combination highly active anti-retroviral therapy. However, we find a significant association of low CCL3L1 gene copy number with improved immune reconstitution following initiation of highly active anti-retroviral therapy (p = 0.012), replicating a previous study. CONCLUSIONS: Our work supports a role for CCL3L1 copy number in immune reconstitution following antiretroviral therapy in HIV, and suggests that the MIP1α -CCR5 axis might be targeted to aid immune reconstitution.


Assuntos
Quimiocinas CC/genética , Variações do Número de Cópias de DNA , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/isolamento & purificação , Adulto , Etiópia/epidemiologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Humanos , Masculino , Tanzânia/epidemiologia , Carga Viral
14.
Proc Natl Acad Sci U S A ; 108(30): 12378-83, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21750151

RESUMO

PRDM9 is a major specifier of human meiotic recombination hotspots, probably via binding of its zinc-finger repeat array to a DNA sequence motif associated with hotspots. However, our view of PRDM9 regulation, in terms of motifs defined and hotspots studied, has a strong bias toward the PRDM9 A variant particularly common in Europeans. We show that population diversity can reveal a second class of hotspots specifically activated by PRDM9 variants common in Africans but rare in Europeans. These African-enhanced hotspots nevertheless share very similar properties with their counterparts activated by the A variant. The specificity of hotspot activation is such that individuals with differing PRDM9 genotypes, even within the same population, can use substantially if not completely different sets of hotspots. Each African-enhanced hotspot is activated by a distinct spectrum of PRDM9 variants, despite the fact that all are predicted to bind the same sequence motif. This differential activation points to complex interactions between the zinc-finger array and hotspots and identifies features of the array that might be important in controlling hotspot activity.


Assuntos
População Negra/genética , Variação Genética , Histona-Lisina N-Metiltransferase/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Troca Genética , DNA/genética , Conversão Gênica , Frequência do Gene , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Desequilíbrio de Ligação , Masculino , Meiose/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Espermatozoides/metabolismo , População Branca/genética
15.
Nat Genet ; 42(10): 859-63, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20818382

RESUMO

PRDM9 has recently been identified as a likely trans regulator of meiotic recombination hot spots in humans and mice. PRDM9 contains a zinc finger array that, in humans, can recognize a short sequence motif associated with hot spots, with binding to this motif possibly triggering hot-spot activity via chromatin remodeling. We now report that human genetic variation at the PRDM9 locus has a strong effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Subtle changes within the zinc finger array can create hot-spot nonactivating or enhancing variants and can even trigger the appearance of a new hot spot, suggesting that PRDM9 is a major global regulator of hot spots in humans. Variation at the PRDM9 locus also influences aspects of genome instability-specifically, a megabase-scale rearrangement underlying two genomic disorders as well as minisatellite instability-implicating PRDM9 as a risk factor for some pathological genome rearrangements.


Assuntos
Variação Genética/genética , Instabilidade Genômica , Histona-Lisina N-Metiltransferase/genética , Meiose/genética , Recombinação Genética/genética , Alelos , Animais , Rearranjo Gênico , Genoma Humano , Homozigoto , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...