Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Pediatr ; 10(1): 2, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36977792

RESUMO

Advances in molecular biology are improving our understanding of the genetic causes underlying human congenital lower urinary tract (i.e., bladder and urethral) malformations. This has recently led to the identification of the first disease-causing variants in the gene BNC2 for isolated lower urinary tract anatomical obstruction (LUTO), and of WNT3 and SLC20A1 as genes implicated in the pathogenesis of the group of conditions called bladder-exstrophy-epispadias complex (BEEC). Implicating candidate genes from human genetic data requires evidence of their influence on lower urinary tract development and evidence of the found genetic variants' pathogenicity. The zebrafish (Danio rerio) has many advantages for use as a vertebrate model organism for the lower urinary tract. Rapid reproduction with numerous offspring, comparable anatomical kidney and lower urinary tract homology, and easy genetic manipulability by Morpholino®-based knockdown or CRISPR/Cas editing are among its advantages. In addition, established marker staining for well-known molecules involved in urinary tract development using whole-mount in situ hybridization (WISH) and the usage of transgenic lines expressing fluorescent protein under a tissue-specific promoter allow easy visualization of phenotypic abnormalities of genetically modified zebrafish. Assays to examine the functionality of the excretory organs can also be modeled in vivo with the zebrafish. The approach of using these multiple techniques in zebrafish not only enables rapid and efficient investigation of candidate genes for lower urinary tract malformations derived from human data, but also cautiously allows transferability of causality from a non-mammalian vertebrate to humans.

2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835129

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While most of the current treatment strategies focus on immune cell regulation, except for the drug siponimod, there is no therapeutic intervention that primarily aims at neuroprotection and remyelination. Recently, nimodipine showed a beneficial and remyelinating effect in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Nimodipine also positively affected astrocytes, neurons, and mature oligodendrocytes. Here we investigated the effects of nimodipine, an L-type voltage-gated calcium channel antagonist, on the expression profile of myelin genes and proteins in the oligodendrocyte precursor cell (OPC) line Oli-Neu and in primary OPCs. Our data indicate that nimodipine does not have any effect on myelin-related gene and protein expression. Furthermore, nimodipine treatment did not result in any morphological changes in these cells. However, RNA sequencing and bioinformatic analyses identified potential micro (mi)RNA that could support myelination after nimodipine treatment compared to a dimethyl sulfoxide (DMSO) control. Additionally, we treated zebrafish with nimodipine and observed a significant increase in the number of mature oligodendrocytes (* p≤ 0.05). Taken together, nimodipine seems to have different positive effects on OPCs and mature oligodendrocytes.


Assuntos
Encefalomielite Autoimune Experimental , MicroRNAs , Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Animais , Camundongos , Nimodipina/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Células Precursoras de Oligodendrócitos/metabolismo , Peixe-Zebra/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Canais de Cálcio Tipo L/metabolismo , MicroRNAs/metabolismo , Diferenciação Celular
3.
J Med Genet ; 60(6): 587-596, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36379543

RESUMO

BACKGROUND: SHROOM4 is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) in SHROOM4 have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system. METHODS: Here, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse and knockdown (KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role of SHROOM4 during embryonic development. RESULTS: In this study, we identified putative disease-causing SNVs and CNVs in SHROOM4 in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showed Shroom4 expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-type SHROOM4 mRNA and morpholino. CONCLUSION: The identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggest SHROOM4 as a developmental gene for different organ systems.


Assuntos
Sistema Cardiovascular , Sistema Urinário , Gravidez , Feminino , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Variações do Número de Cópias de DNA , Morfolinos , Sistema Urinário/anormalidades , Sistema Nervoso Central
4.
Microsc Res Tech ; 86(2): 125-136, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36054690

RESUMO

Light sheet fluorescence microscopy (LSFM) is an important tool in developmental biology. In this microscopy technique confocal line detection is often used to improve image contrast. To this end, the image of the illuminating scanned focused laser beam must be mapped onto a line detector. This is not trivial for long-term observations, since the spatial position of the laser beam and therefore its image on the detector may drift. The problem is aggravated in two-photon excitation LSFM, since pulsed laser light sources exhibit a lower laser beam pointing stability than continuous wave lasers. Here, we present a procedure for automatic synchronization between the excitation laser and detector, which does not require any additional hardware components and can therefore easily be integrated into existing systems. Since the recorded images are affected by noise, a specific, noise-tolerant focus metric was developed for calculating the relative displacement, which also allows for autofocusing in the detection direction. Furthermore, we developed an image analysis approach to determine a possible tilt of the excitation laser, which is executed in parallel to the autofocusing and enables the measurement of three solid angles. This allows to automatically correct for the tilting during a measurement. We demonstrated our approach by the observation of the migration of oligodendrocyte precursor cells in two-day-old fluorescent Tg(olig2:eGFP) reporter zebrafish larvae over a time span of more than 20 hours.


Assuntos
Processamento de Imagem Assistida por Computador , Peixe-Zebra , Animais , Microscopia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , Corantes , Larva , Microscopia Confocal/métodos
5.
Cell Chem Biol ; 29(10): 1541-1555.e7, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36126653

RESUMO

Therapies that promote neuroprotection and axonal survival by enhancing myelin regeneration are an unmet need to prevent disability progression in multiple sclerosis. Numerous potentially beneficial compounds have originated from phenotypic screenings but failed in clinical trials. It is apparent that current cell- and animal-based disease models are poor predictors of positive treatment options, arguing for novel experimental approaches. Here we explore the experimental power of humanized zebrafish to foster the identification of pro-remyelination compounds via specific inhibition of GPR17. Using biochemical and imaging techniques, we visualize the expression of zebrafish (zf)-gpr17 during the distinct stages of oligodendrocyte development, thereby demonstrating species-conserved expression between zebrafish and mammals. We also demonstrate species-conserved function of zf-Gpr17 using genetic loss-of-function and rescue techniques. Finally, using GPR17-humanized zebrafish, we provide proof of principle for in vivo analysis of compounds acting via targeted inhibition of human GPR17. We anticipate that GPR17-humanized zebrafish will markedly improve the search for effective pro-myelinating pharmacotherapies.


Assuntos
Oligodendroglia , Pró-Fármacos , Animais , Humanos , Peixe-Zebra/metabolismo , Pró-Fármacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Diferenciação Celular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Modelos Animais de Doenças , Mamíferos/metabolismo
6.
Redox Biol ; 49: 102221, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952462

RESUMO

Redox regulation of specific cysteines via oxidoreductases of the thioredoxin family is increasingly being recognized as an important signaling pathway. Here, we demonstrate that the cytosolic isoform of the vertebrate-specific oxidoreductase Glutaredoxin 2 (Grx2c) regulates the redox state of the transcription factor SP-1 and thereby its binding affinity to both the promoter and an enhancer region of the CSPG4 gene encoding chondroitin sulfate proteoglycan nerve/glial antigen 2 (NG2). This leads to an increased number of NG2 glia during in vitro oligodendroglial differentiation and promotes migration of these wound healing cells. On the other hand, we found that the same mechanism also leads to increased invasion of glioma tumor cells. Using in vitro (human cell lines), ex vivo (mouse primary cells), and in vivo models (zebrafish), as well as glioblastoma patient tissue samples we provide experimental data highlighting the Yin and Yang of redox signaling in the central nervous system and the enzymatic Taoism of Grx2c.


Assuntos
Glioma , Glutarredoxinas , Animais , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Glioma/genética , Glioma/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Neuroglia/metabolismo , Filosofias Religiosas , Cicatrização/genética , Peixe-Zebra/metabolismo
7.
J Neurosci Res ; 99(11): 2774-2792, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520578

RESUMO

Myelination is crucial for the development and maintenance of axonal integrity, especially fast axonal action potential conduction. There is increasing evidence that glutamate signaling and release through neuronal activity modulates the myelination process. In this study, we examine the effect of manipulating glutamate signaling on myelination of oligodendrocyte (OL) lineage cells and their development in zebrafish (zf). We use the "intensity-based glutamate-sensing fluorescent reporter" (iGluSnFR) in the zf model (both sexes) to address the hypothesis that glutamate is implicated in regulation of myelinating OLs. Our results show that glial iGluSnFR expression significantly reduces OL lineage cell number and the expression of myelin markers in larvae (zfl) and adult brains. The specific glutamate receptor agonist, L-AP4, rescues this iGluSnFR effect by significantly increasing the expression of the myelin-related genes, plp1b and mbpa, and enhances myelination in L-AP4-injected zfl compared to controls. Furthermore, we demonstrate that degrading glutamate using Glutamat-Pyruvate Transaminase (GPT) or the blockade of glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC) significantly decreases myelin-related genes and drastically declines myelination in brain ventricle-injected zfl. Moreover, we found that myelin-specific ClaudinK (CldnK) and 36K protein expression is significantly decreased in iGluSnFR-expressing zfl and adult brains compared to controls. Taken together, this study confirms that glutamate signaling is directly required for the preservation of myelinating OLs and for the myelination process itself. These findings further suggest that glutamate signaling may provide novel targets to therapeutically boost remyelination in several demyelinating diseases of the CNS.


Assuntos
Oligodendroglia , Peixe-Zebra , Animais , Axônios/metabolismo , Feminino , Glutamatos/metabolismo , Masculino , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
8.
Front Cell Dev Biol ; 8: 567, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850778

RESUMO

Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.

9.
Nat Commun ; 11(1): 3445, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651396

RESUMO

Despite their very close structural similarity, CxxC/S-type (class I) glutaredoxins (Grxs) act as oxidoreductases, while CGFS-type (class II) Grxs act as FeS cluster transferases. Here we show that the key determinant of Grx function is a distinct loop structure adjacent to the active site. Engineering of a CxxC/S-type Grx with a CGFS-type loop switched its function from oxidoreductase to FeS transferase. Engineering of a CGFS-type Grx with a CxxC/S-type loop abolished FeS transferase activity and activated the oxidative half reaction of the oxidoreductase. The reductive half-reaction, requiring the interaction with a second GSH molecule, was enabled by switching additional residues in the active site. We explain how subtle structural differences, mostly depending on the structure of one particular loop, act in concert to determine Grx function.


Assuntos
Glutarredoxinas/metabolismo , Animais , Domínio Catalítico , Glutarredoxinas/química , Humanos , Proteínas Ferro-Enxofre/química , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Transdução de Sinais/fisiologia , Especificidade por Substrato
10.
Glia ; 68(3): 509-527, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31702067

RESUMO

In contrast to humans and other mammals, zebrafish can successfully regenerate and remyelinate central nervous system (CNS) axons following injury. In addition to common myelin proteins found in mammalian myelin, 36K protein is a major component of teleost fish CNS myelin. Although 36K is one of the most abundant proteins in zebrafish brain, its function remains unknown. Here we investigate the function of 36K using translation-blocking Morpholinos. Morphant larvae showed fewer dorsally migrated oligodendrocyte precursor cells as well as upregulation of Notch ligand. A gamma secretase inhibitor, which prevents activation of Notch, could rescue oligodendrocyte precursor cell numbers in 36K morphants, suggesting that 36K regulates initial myelination through inhibition of Notch signaling. Since 36K like other short chain dehydrogenases might act on lipids, we performed thin layer chromatography and mass spectrometry of lipids and found changes in lipid composition in 36K morphant larvae. Altogether, we suggest that during early development 36K regulates membrane lipid composition, thereby altering the amount of transmembrane Notch ligands and the efficiency of intramembrane gamma secretase processing of Notch and thereby influencing oligodendrocyte precursor cell differentiation and further myelination. Further studies on the role of 36K short chain dehydrogenase in oligodendrocyte precursor cell differentiation during remyelination might open up new strategies for remyelination therapies in human patients.


Assuntos
Axônios/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Animais , Axônios/patologia , Encéfalo/metabolismo , Células CHO , Diferenciação Celular/fisiologia , Cricetulus , Doenças Desmielinizantes/metabolismo , Humanos , Neurogênese/fisiologia , Peixe-Zebra
11.
Nat Commun ; 10(1): 2167, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092821

RESUMO

Ribbon synapses transmit information in sensory systems, but their development is not well understood. To test the hypothesis that ribbon assembly stabilizes nascent synapses, we performed simultaneous time-lapse imaging of fluorescently-tagged ribbons in retinal cone bipolar cells (BCs) and postsynaptic densities (PSD95-FP) of retinal ganglion cells (RGCs). Ribbons and PSD95-FP clusters were more stable when these components colocalized at synapses. However, synapse density on ON-alpha RGCs was unchanged in mice lacking ribbons (ribeye knockout). Wildtype BCs make both ribbon-containing and ribbon-free synapses with these GCs even at maturity. Ribbon assembly and cone BC-RGC synapse maintenance are thus regulated independently. Despite the absence of synaptic ribbons, RGCs continued to respond robustly to light stimuli, although quantitative examination of the responses revealed reduced frequency and contrast sensitivity.


Assuntos
Células Fotorreceptoras Retinianas Cones/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Microscopia Intravital/métodos , Luz , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Estimulação Luminosa , Cultura Primária de Células , Células Bipolares da Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Imagem com Lapso de Tempo/métodos , Proteína Vermelha Fluorescente
12.
Am J Hum Genet ; 104(5): 994-1006, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051115

RESUMO

Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853∗]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Re-sequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage.


Assuntos
Aberrações Cromossômicas , Proteínas de Ligação a DNA/genética , Doenças Fetais/genética , Mutação , Obstrução do Colo da Bexiga Urinária/congênito , Obstrução do Colo da Bexiga Urinária/genética , Adulto , Animais , Criança , Feminino , Doenças Fetais/patologia , Genes Dominantes , Idade Gestacional , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Gravidez , Obstrução do Colo da Bexiga Urinária/patologia , Peixe-Zebra
13.
Cell Rep ; 25(8): 2017-2026.e3, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463000

RESUMO

Sensory processing can be tuned by a neuron's integration area, the types of inputs, and the proportion and number of connections with those inputs. Integration areas often vary topographically to sample space differentially across regions. Here, we highlight two visual circuits in which topographic changes in the postsynaptic retinal ganglion cell (RGC) dendritic territories and their presynaptic bipolar cell (BC) axonal territories are either matched or unmatched. Despite this difference, in both circuits, the proportion of inputs from each BC type, i.e., synaptic convergence between specific BCs and RGCs, remained constant across varying dendritic territory sizes. Furthermore, synapse density between BCs and RGCs was invariant across topography. Our results demonstrate a wiring design, likely engaging homotypic axonal tiling of BCs, that ensures consistency in synaptic convergence between specific BC types onto their target RGCs while enabling independent regulation of pre- and postsynaptic territory sizes and synapse number between cell pairs.


Assuntos
Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Animais , Axônios/metabolismo , Dendritos/metabolismo , Glutamatos/metabolismo , Camundongos , Células Bipolares da Retina/metabolismo , Peixe-Zebra/metabolismo
14.
Birth Defects Res ; 110(7): 587-597, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29388391

RESUMO

BACKGROUND: Syndromic brain malformations comprise a large group of anomalies with a birth prevalence of about 1 in 1,000 live births. Their etiological factors remain largely unknown. To identify causative mutations, we used whole-exome sequencing (WES) in aborted fetuses and children with syndromic brain malformations in which chromosomal microarray analysis was previously unremarkable. METHODS: WES analysis was applied in eight case-parent trios, six aborted fetuses, and two children. RESULTS: WES identified a novel de novo mutation (p.Gly268Arg) in ACTB (Baraitser-Winter syndrome-1), a homozygous stop mutation (p.R2442*) in ASPM (primary microcephaly type 5), and a novel hemizygous X-chromosomal mutation (p.I250V) in SLC9A6 (X-linked syndromic mentaly retardation, Christianson type). Furthermore, WES identified a de novo mutation (p.Arg1093Gln) in BAZ1A. This mutation was previously reported in only one allele in 121.362 alleles tested (dbSNP build 147). BAZ1A has been associated with neurodevelopmental impairment and dysregulation of several pathways including vitamin D metabolism. Here, serum vitamin-D (25-(OH)D) levels were insufficient and gene expression comparison between the child and her parents identified 27 differentially expressed genes. Of note, 10 out of these 27 genes are associated to cytoskeleton, integrin and synaptic related pathways, pinpointing to the relevance of BAZ1A in neural development. In situ hybridization in mouse embryos between E10.5 and E13.5 detected Baz1a expression in the central and peripheral nervous system. CONCLUSION: In syndromic brain malformations, WES is likely to identify causative mutations when chromosomal microarray analysis is unremarkable. Our findings suggest BAZ1A as a possible new candidate gene.


Assuntos
Actinas/genética , Encéfalo/anormalidades , Sequenciamento do Exoma , Mutação , Trocadores de Sódio-Hidrogênio/genética , Fatores de Transcrição/genética , Animais , Criança , Proteínas Cromossômicas não Histona , Feminino , Humanos , Masculino , Camundongos
15.
J Clin Invest ; 127(4): 1485-1490, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28287404

RESUMO

Dowling-Degos disease (DDD) is an autosomal-dominant disorder of skin pigmentation associated with mutations in keratin 5 (KRT5), protein O-fucosyltransferase 1 (POFUT1), or protein O-glucosyltransferase 1 (POGLUT1). Here, we have identified 6 heterozygous truncating mutations in PSENEN, encoding presenilin enhancer protein 2, in 6 unrelated patients and families with DDD in whom mutations in KRT5, POFUT1, and POGLUT1 have been excluded. Further examination revealed that the histopathologic feature of follicular hyperkeratosis distinguished these 6 patients from previously studied individuals with DDD. Knockdown of psenen in zebrafish larvae resulted in a phenotype with scattered pigmentation that mimicked human DDD. In the developing zebrafish larvae, in vivo monitoring of pigment cells suggested that disturbances in melanocyte migration and differentiation underlie the DDD pathogenesis associated with PSENEN. Six of the PSENEN mutation carriers presented with comorbid acne inversa (AI), an inflammatory hair follicle disorder, and had a history of nicotine abuse and/or obesity, which are known trigger factors for AI. Previously, PSENEN mutations were identified in familial AI, and comanifestation of DDD and AI has been reported for decades. The present work suggests that PSENEN mutations can indeed cause a comanifestation of DDD and AI that is likely triggered by predisposing factors for AI. Thus, the present report describes a DDD subphenotype in PSENEN mutation carriers that is associated with increased susceptibility to AI.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Hidradenite Supurativa/genética , Hiperpigmentação/genética , Proteínas de Membrana/genética , Dermatopatias Genéticas/genética , Dermatopatias Papuloescamosas/genética , Animais , Códon sem Sentido , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Hidradenite Supurativa/enzimologia , Hiperpigmentação/enzimologia , Masculino , Dermatopatias Genéticas/enzimologia , Dermatopatias Papuloescamosas/enzimologia , Peixe-Zebra
16.
EMBO J ; 36(9): 1134-1146, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28258061

RESUMO

Conventionally, neuronal development is regarded to follow a stereotypic sequence of neurogenesis, migration, and differentiation. We demonstrate that this notion is not a general principle of neuronal development by documenting the timing of mitosis in relation to multiple differentiation events for bipolar cells (BCs) in the zebrafish retina using in vivo imaging. We found that BC progenitors undergo terminal neurogenic divisions while in markedly disparate stages of neuronal differentiation. Remarkably, the differentiation state of individual BC progenitors at mitosis is not arbitrary but matches the differentiation state of post-mitotic BCs in their surround. By experimentally shifting the relative timing of progenitor division and differentiation, we provide evidence that neurogenesis and differentiation can occur independently of each other. We propose that the uncoupling of neurogenesis and differentiation could provide neurogenic programs with flexibility, while allowing for synchronous neuronal development within a continuously expanding cell pool.


Assuntos
Diferenciação Celular , Divisão Celular , Neurogênese , Retina/embriologia , Células Bipolares da Retina/fisiologia , Peixe-Zebra/embriologia , Animais
17.
Sci Rep ; 7: 42170, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176844

RESUMO

Previously genome-wide association methods in patients with classic bladder exstrophy (CBE) found association with ISL1, a master control gene expressed in pericloacal mesenchyme. This study sought to further explore the genetics in a larger set of patients following-up on the most promising genomic regions previously reported. Genotypes of 12 markers obtained from 268 CBE patients of Australian, British, German Italian, Spanish and Swedish origin and 1,354 ethnically matched controls and from 92 CBE case-parent trios from North America were analysed. Only marker rs6874700 at the ISL1 locus showed association (p = 2.22 × 10-08). A meta-analysis of rs6874700 of our previous and present study showed a p value of 9.2 × 10-19. Developmental biology models were used to clarify the location of ISL1 activity in the forming urinary tract. Genetic lineage analysis of Isl1-expressing cells by the lineage tracer mouse model showed Isl1-expressing cells in the urinary tract of mouse embryos at E10.5 and distributed in the bladder at E15.5. Expression of isl1 in zebrafish larvae staged 48 hpf was detected in a small region of the developing pronephros. Our study supports ISL1 as a major susceptibility gene for CBE and as a regulator of urinary tract development.


Assuntos
Extrofia Vesical/genética , Predisposição Genética para Doença , Proteínas com Homeodomínio LIM/genética , Mesoderma/metabolismo , Organogênese/genética , Fatores de Transcrição/genética , Sistema Urinário/metabolismo , Animais , Extrofia Vesical/metabolismo , Extrofia Vesical/patologia , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mesoderma/anormalidades , Mesoderma/crescimento & desenvolvimento , Camundongos , Polimorfismo de Nucleotídeo Único , Pronefro/crescimento & desenvolvimento , Pronefro/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Sistema Urinário/anormalidades , Sistema Urinário/crescimento & desenvolvimento , Peixe-Zebra
18.
Front Mol Neurosci ; 7: 91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520613

RESUMO

Retrieval of synaptic vesicles can occur 1-10 s after fusion, but the role of clathrin during this process has been unclear because the classical mode of clathrin-mediated endocytosis (CME) is an order of magnitude slower, as during retrieval of surface receptors. Classical CME is thought to be rate-limited by the recruitment of clathrin, which raises the question: how is clathrin recruited during synaptic vesicle recycling? To investigate this question we applied total internal reflection fluorescence microscopy (TIRFM) to the synaptic terminal of retinal bipolar cells expressing fluorescent constructs of clathrin light-chain A. Upon calcium influx we observed a fast accumulation of clathrin within 100 ms at the periphery of the active zone. The subsequent loss of clathrin from these regions reflected endocytosis because the application of a potent clathrin inhibitor Pitstop2 dramatically slowed down this phase by ~3 fold. These results indicate that clathrin-dependent retrieval of synaptic vesicles is unusually fast, most probably because of a "priming" step involving a state of association of clathrin with the docked vesicle and with the endosomes and cisternae surrounding the ribbons. Fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) showed that the majority of clathrin is moving with the same kinetics as synaptic vesicle proteins. Together, these results indicate that the fast endocytic mechanism operating to retrieve synaptic vesicles differs substantially from the classical mode of CME operating via formation of a coated pit.

19.
PLoS Biol ; 12(10): e1001972, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25333637

RESUMO

The visual system transmits information about fast and slow changes in light intensity through separate neural pathways. We used in vivo imaging to investigate how bipolar cells transmit these signals to the inner retina. We found that the volume of the synaptic terminal is an intrinsic property that contributes to different temporal filters. Individual cells transmit through multiple terminals varying in size, but smaller terminals generate faster and larger calcium transients to trigger vesicle release with higher initial gain, followed by more profound adaptation. Smaller terminals transmitted higher stimulus frequencies more effectively. Modeling global calcium dynamics triggering vesicle release indicated that variations in the volume of presynaptic compartments contribute directly to all these differences in response dynamics. These results indicate how one neuron can transmit different temporal components in the visual signal through synaptic terminals of varying geometries with different adaptational properties.


Assuntos
Sinalização do Cálcio , Terminações Pré-Sinápticas/metabolismo , Células Bipolares da Retina/metabolismo , Transmissão Sináptica , Visão Ocular , Adaptação Ocular , Animais , Carpa Dourada , Modelos Biológicos , Peixe-Zebra
20.
Front Pharmacol ; 4: 83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825458

RESUMO

The potential gap junction forming mouse connexin29 (Cx29) protein is concomitantly expressed with connexin32 (Cx32) in peripheral myelin forming Schwann cells and together with both Cx32 and connexin47 (Cx47) in oligodendrocytes of the CNS. To study the genomic structure and functional expression of Cx29, either primary cells or cell culture systems might be selected, from which the latter are easier to cultivate. Both structure and expression of Cx29 is still not fully understood. In the mouse sciatic nerve, brain and the oligodendroglial precursor cell line Oli-neu the Cx29 gene is processed in two transcript isoforms both harboring a unique reading frame. In contrast to Cx32 and Cx47, only Cx29 protein is abundantly expressed in undifferentiated as well as differentiated Oli-neu cells but the absence of Etbr dye transfer after microinjection concealed the function of Cx29-mediated gap junction communication between those cells. Although HeLa cells stably transfected with Cx29 or Cx29-eGFP neither demonstrated any permeability for Lucifer yellow nor for neurobiotin, blocking of Etbr uptake from the media by gap junction blockers does suppose a role of Cx29 in hemi-channel function. Thus, we conclude that, due to its high abundance of Cx29 expression and its reproducible culture conditions, the oligodendroglial precursor cell line Oli-neu might constitute an appropriate cell culture system to study molecular mechanisms or putative extracellular stimuli to functionally open Cx29 channels or hemi-channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...