Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(2): e0247081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630868

RESUMO

Metal-based high-touch surfaces used for indoor applications such as doorknobs, light switches, handles and desks need to remain their antimicrobial properties even when tarnished or degraded. A novel laboratory methodology of relevance for indoor atmospheric conditions and fingerprint contact has therefore been elaborated for combined studies of both tarnishing/corrosion and antimicrobial properties of such high-touch surfaces. Cu metal was used as a benchmark material. The protocol includes pre-tarnishing/corrosion of the high touch surface for different time periods in a climatic chamber at repeated dry/wet conditions and artificial sweat deposition followed by the introduction of bacteria onto the surfaces via artificial sweat droplets. This methodology provides a more realistic and reproducible approach compared with other reported procedures to determine the antimicrobial efficiency of high-touch surfaces. It provides further a possibility to link the antimicrobial characteristics to physical and chemical properties such as surface composition, chemical reactivity, tarnishing/corrosion, surface roughness and surface wettability. The results elucidate that bacteria interactions as well as differences in extent of tarnishing can alter the physical properties (e.g. surface wettability, surface roughness) as well as the extent of metal release. The results clearly elucidate the importance to consider changes in chemical and physical properties of indoor hygiene surfaces when assessing their antimicrobial properties.


Assuntos
Antibacterianos/química , Anti-Infecciosos/química , Cobre/química , Metais/química
2.
J Hazard Mater ; 413: 125273, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581669

RESUMO

Welding fume particles are hazardous. Their toxicity likely depends on their composition and reactivity. This study aimed at exploring the role of sodium or other fluorides (NaF), which are intentionally added to flux-cored wire electrodes for stainless steel welding, on the solubility (in phosphate buffered saline) and toxicity of the generated welding fume particles. A multi-analytical particle characterization approach along with in-vitro cell assays was undertaken. The release of Cr(VI) and Mn from the particles was tested as a function of fluoride solution concentration. The welding fume particles containing NaF released significantly higher amounts of Cr(VI) compared with solid wire reference fumes, which was associated with increased cytotoxicity and genotoxicity in-vitro. No crystalline Na or potassium (K) containing chromates were observed. Cr(VI) was incorporated in an amorphous mixed oxide. Solution-added fluorides did not increase the solubility of Cr(VI), but contributed to a reduced Mn release from both solid and flux-cored wire fume particles and the reduction of Cr(VI) release from solid wire fume particles. Chemical speciation modeling suggested that metal fluoride complexes were not formed. The presence of NaF in the welding electrodes did not have any direct, but possibly an indirect, role in the Cr(VI) solubility of welding fumes.


Assuntos
Poluentes Ocupacionais do Ar , Nanopartículas , Soldagem , Poluentes Ocupacionais do Ar/análise , Fluoretos , Nanopartículas/toxicidade , Solubilidade , Aço Inoxidável
3.
J Hazard Mater ; 342: 527-535, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28886565

RESUMO

Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon).

4.
ACS Biomater Sci Eng ; 1(8): 617-620, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435084

RESUMO

Cobalt chromium molybdenum alloys (CoCrMo) are commonly used as articulating components in joint prostheses. In this tribocorrosive environment, wear debris and metal ionic species are released and interact with proteins, possibly resulting in protein aggregation. This study aimed to investigate whether this could have an effect on the friction coefficient in a typical material couple, namely CoCrMo-on-polyethylene. It was confirmed that both Co(II) and Cr(III) ions, and their combination, at concentrations relevant for the metal release situation, resulted in protein aggregation and its concomitant precipitation, which increased the friction coefficient. Future studies should identify the clinical importance of these findings.

5.
Acta Biomater ; 8(9): 3478-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22522009

RESUMO

Novel silica materials incorporating nanotechnology are promising materials for biomedical applications, but their novel properties may also bring unforeseen behavior in biological systems. Micro-size silica is well documented to induce hemolysis, but little is known about the hemolytic activities of nanostructured silica materials. In this study, the hemolytic properties of synthetic amorphous silica nanoparticles with primary sizes of 7-14 nm (hydrophilic vs. hydrophobic), 5-15 nm, 20 nm and 50 nm, and model meso/macroporous silica particles with pore diameters of 40 nm and 170 nm are investigated. A crystalline silica sample (0.5-10 µm) is included for benchmarking purposes. Special emphasis is given to investigations of how the temperature and solution complexity (solvent, plasma), as well as the physicochemical properties (such as size, surface charge, hydrophobicity and other surface properties), link to the hemolytic activities of these particles. Results suggests the potential importance of small size and large external surface area, as well as surface charge/structure, in the hemolysis of silica particles. Furthermore, a significant correlation is observed between the hemolytic profile of red blood cells and the cytotoxicity profile of human promyelocytic leukemia cells (HL-60) induced by nano- and porous silica particles, suggesting a potential universal mechanism of action. Importantly, the results generated suggest that the protective effect of plasma towards silica nanoparticle-induced hemolysis as well as cytotoxicity is primarily due to the protein/lipid layer shielding the silica particle surface. These results will assist the rational design of hemocompatible silica particles for biomedical applications.


Assuntos
Hemólise , Nanopartículas , Gases em Plasma , Dióxido de Silício/química , Células HL-60 , Humanos , Microscopia Eletrônica de Transmissão , Propriedades de Superfície , Difração de Raios X
6.
Sci Total Environ ; 412-413: 46-57, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22051551

RESUMO

Short (days, weeks) and long-term (months, years) non-sheltered field exposures of brass (15, and 20 wt.% Zn) and copper sheet have been conducted in three European cities (Milan, Stockholm, Madrid) to generate an in-depth time-dependent understanding of patina evolution, corrosion rates, aesthetic appearance, metal release and degree of dezincification in relation to detailed bulk and surface characteristics prior to exposure. This has been accomplished by using a multitude of surface and bulk analytical tools, chemical analysis and colorimetric investigations. Small differences in surface finish and local variations in nobility observed for the non-exposed brass alloys resulted in slight differences in corrosion initiation. Despite different kinetic behaviour and relative surface distributions of zinc- and copper-rich patina constituents, similar phases were identified with copper-rich phases rapidly dominating the outermost patina layer in Milan, compared to Madrid and Stockholm showing both copper- and zinc-rich phases. As a consequence of differences in surface coverage of copper- and zinc-rich corrosion products at the different sites, the release ratios of copper to zinc varied concordantly. The released amount of zinc to copper (Zn/Cu) was for both alloys and test sites always higher compared to the bulk composition showing a preferential release of zinc. The amount of released copper from the brass alloys was on an average 30-40% lower compared to copper sheet at all test sites investigated. Significantly lower annual total release rates of copper and zinc compared with annual corrosion rates were evident for both brass alloys at all sites.


Assuntos
Ligas/química , Cobre/análise , Poluição Ambiental/efeitos adversos , Zinco/análise , Poluição do Ar/efeitos adversos , Cidades , Cobre/química , Corrosão , Itália , Espanha , Suécia , Fatores de Tempo , Zinco/química
7.
Water Res ; 43(20): 5031-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19762062

RESUMO

Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retained already during transport through the internal drainage system of the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction. Most copper, not retained by cast iron and concrete surfaces, was strongly complexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper from the roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.


Assuntos
Materiais de Construção/análise , Cobre/análise , Chuva/química , Poluentes Químicos da Água/análise , Drenagem Sanitária , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...