Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(11): e81768, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312353

RESUMO

Oncolytic type-1 herpes simplex viruses (oHSVs) lacking the γ134.5 neurovirulence gene are being evaluated for treatment of a variety of malignancies. oHSVs replicate within and directly kill permissive cancer cells. To augment their anti-tumor activity, oHSVs have been engineered to express immunostimulatory molecules, including cytokines, to elicit tumor-specific immune responses. Interleukin-15 (IL-15) holds potential as an immunotherapeutic cytokine because it has been demonstrated to promote both natural killer (NK) cell-mediated and CD8(+) T cell-mediated cytotoxicity against cancer cells. The purpose of these studies was to engineer an oHSV producing bioactive IL-15. Two oHSVs were constructed encoding murine (m)IL-15 alone (J100) or with the mIL-15 receptor α (mIL-15Rα, J100D) to determine whether co-expression of these proteins is required for production of bioactive mIL-15 from oHSV. The following were demonstrated: i) both oHSVs retain replication competence and cytotoxicity in permissive tumor cell lines. ii) Enhanced production of mIL-15 was detected in cell lysates of neuro-2a cells following J100D infection as compared to J100 infection, suggesting that mIL-15Rα improved mIL-15 production. iii) Soluble mIL-15 in complex with mIL-15Rα was detected in supernates from J100D-infected, but not J100-infected, neuro-2a, GL261, and CT-2A cells. These cell lines vary in permissiveness to oHSV replication and cytotoxicity, demonstrating soluble mIL-15/IL-15Rα complex production from J100D was independent of direct oHSV effects. iv) The soluble mIL-15/IL-15Rα complex produced by J100D was bioactive, stimulating NK cells to proliferate and reduce the viability of syngeneic GL261 and CT-2A cells. v) J100 and J100D were aneurovirulent inasmuch as no neuropathologic effects were documented following direct inoculation into brains of CBA/J mice at up to 1x10(7) plaque forming units. The production of mIL-15/mIL-15Rα from multiple tumor lines, as well as the lack of neurovirulence, renders J100D suitable for investigating the combined effects of oHSV and mIL-15/IL-15Rα in various cancer models.


Assuntos
Engenharia Genética/métodos , Herpesvirus Humano 1/genética , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Interleucina-15/biossíntese , Interleucina-15/metabolismo , Vírus Oncolíticos/genética , Replicação Viral , Animais , Linhagem Celular Tumoral , Genes Virais/genética , Herpesvirus Humano 1/fisiologia , Humanos , Injeções , Interleucina-15/química , Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/genética , Camundongos , Vírus Oncolíticos/fisiologia , Ligação Proteica , Solubilidade
2.
Adv Virol ; 2012: 359869, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829821

RESUMO

Human herpesviruses cause diseases of considerable morbidity and mortality, ranging from encephalitis to hematologic malignancies. As evidence emerges about the role of innate immunity and natural killer (NK) cells in the control of herpesvirus infection, evidence of viral methods of innate immune evasion grows as well. These methods include interference with the ligands on infected cell surfaces that bind NK cell activating or inhibitory receptors. This paper summarizes the most extensively studied NK cell receptor/ligand pairs and then describes the methods of NK cell evasion used by all eight herpesviruses through these receptors and ligands. Although great strides have been made in elucidating their mechanisms, there is still a disparity between viruses in the amount of knowledge regarding innate immune evasion. Further research of herpesvirus innate immune evasion can provide insight for circumventing viral mechanisms in future therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...