Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 169: 107927, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184864

RESUMO

Antimicrobial resistance (AMR) has become more of a concern in recent decades, particularly in infections associated with global public health threats. The development of new antibiotics is crucial to ensuring infection control and eradicating AMR. Although drug discovery and development are essential processes in the transformation of a drug candidate from the laboratory to the bedside, they are often very complicated, expensive, and time-consuming. The pharmaceutical sector is continuously innovating strategies to reduce research costs and accelerate the development of new drug candidates. Computer-aided drug discovery (CADD) has emerged as a powerful and promising technology that renews the hope of researchers for the faster identification, design, and development of cheaper, less resource-intensive, and more efficient drug candidates. In this review, we discuss an overview of AMR, the potential, and limitations of CADD in AMR drug discovery, and case studies of the successful application of this technique in the rapid identification of various drug candidates. This review will aid in achieving a better understanding of available CADD techniques in the discovery of novel drug candidates against resistant pathogens and other infectious agents.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Descoberta de Drogas/métodos , Antibacterianos , Computadores
2.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985614

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19, which was declared a global pandemic in March 2020 by the World Health Organization (WHO). Since SARS-CoV-2 main protease plays an essential role in the virus's life cycle, the design of small drug molecules with lower molecular weight has been a promising development targeting its inhibition. Herein, we evaluated the novel peptidomimetic azatripeptide and azatetrapeptide nitriles against SARS-CoV-2 main protease. We employed molecular dynamics (MD) simulations to elucidate the selected compounds' binding free energy profiles against SARS-CoV-2 and further unveil the residues responsible for the drug-binding properties. Compound 8 exhibited the highest binding free energy of -49.37 ± 0.15 kcal/mol, followed by compound 7 (-39.83 ± 0.19 kcal/mol), while compound 17 showed the lowest binding free energy (-23.54 ± 0.19 kcal/mol). In addition, the absorption, distribution, metabolism, and excretion (ADME) assessment was performed and revealed that only compound 17 met the drug-likeness parameters and exhibited high pharmacokinetics to inhibit CYP1A2, CYP2C19, and CYP2C9 with better absorption potential and blood-brain barrier permeability (BBB) index. The additional intermolecular evaluations suggested compound 8 as a promising drug candidate for inhibiting SARS-CoV-2 Mpro. The substitution of isopropane in compound 7 with an aromatic benzene ring in compound 8 significantly enhanced the drug's ability to bind better at the active site of the SARS-CoV-2 Mpro.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , SARS-CoV-2 , Simulação de Dinâmica Molecular , Ésteres/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...