Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 689, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400551

RESUMO

MYC is one of the most commonly dysregulated proto-oncogenes in cancer. MYC promotes cancer initiation and maintenance by regulating multiple biological processes, such as proliferation and stem cell function. Here, we show that developmental regulator RUNX3 targets MYC protein for rapid degradation through the glycogen synthase kinase-3 beta-F-box/WD repeat-containing protein 7 (GSK3ß-FBXW7) proteolytic pathway. The evolutionarily conserved Runt domain of RUNX3 interacts directly with the basic helix-loop-helix leucine zipper of MYC, resulting in the disruption of MYC/MAX and MYC/MIZ-1 interactions, enhanced GSK3ß-mediated phosphorylation of MYC protein at threonine-58 and its subsequent degradation via the ubiquitin-proteasomal pathway. We therefore uncover a previously unknown mode of MYC destabilization by RUNX3 and provide an explanation as to why RUNX3 inhibits early-stage cancer development in gastrointestinal and lung mouse cancer models.


Assuntos
Núcleo Celular , Subunidade alfa 3 de Fator de Ligação ao Core , Neoplasias Pulmonares , Animais , Camundongos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteólise , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo
2.
Blood Adv ; 7(16): 4492-4504, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37327114

RESUMO

The functionality of natural killer (NK) cells is tuned during education and is associated with remodeling of the lysosomal compartment. We hypothesized that genetic variation in killer cell immunoglobulin-like receptor (KIR) and HLA, which is known to influence the functional strength of NK cells, fine-tunes the payload of effector molecules stored in secretory lysosomes. To address this possibility, we performed a high-resolution analysis of KIR and HLA class I genes in 365 blood donors and linked genotypes to granzyme B loading and functional phenotypes. We found that granzyme B levels varied across individuals but were stable over time in each individual and genetically determined by allelic variation in HLA class I genes. A broad mapping of surface receptors and lysosomal effector molecules revealed that DNAM-1 and granzyme B levels served as robust metric of the functional state in NK cells. Variation in granzyme B levels at rest was tightly linked to the lytic hit and downstream killing of major histocompatibility complex-deficient target cells. Together, these data provide insights into how variation in genetically hardwired receptor pairs tunes the releasable granzyme B pool in NK cells, resulting in predictable hierarchies in global NK cell function.


Assuntos
Células Matadoras Naturais , Receptores KIR , Granzimas/genética , Granzimas/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Genótipo
3.
Nucleic Acid Ther ; 31(2): 145-154, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33567222

RESUMO

Modification of specificity of T cells for the use in adoptive transfer (CAR- or TCR-redirected T cells) has revolutionized the therapy of liquid tumors and some infectious diseases. However, several obstacles are still hampering the efficacy of such potent therapy, hence concurrent modification of the function is also required to obtain successful results. Here we show the use of splice-switching antisense oligonucleotides (SSOs) as a tool to transiently modify T cell function. We demonstrate the possibility to transfect SSOs and an exogenous TCR into primary human T cells in the same electroporation reaction, without affecting viability and function of the transfected T lymphocytes. Moreover, we show that SSOs targeting T cell-specific mRNAs induce the skipping of the targeted exons, and the reduction of the protein and consequent modification of T cell function. This technical work paves the way to the use of SSOs in immune cells, not only for the knockdown of the functional isoform of the targeted proteins, but also for the protein manipulation by elimination of specific domains encoded by targeted exons.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Linfócitos T/imunologia , Sobrevivência Celular/imunologia , Éxons/efeitos dos fármacos , Éxons/genética , Humanos , Mutação/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/imunologia , Splicing de RNA/genética , Splicing de RNA/imunologia , RNA Mensageiro/genética , Linfócitos T/efeitos dos fármacos
4.
Nat Commun ; 10(1): 514, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705279

RESUMO

Inhibitory signaling during natural killer (NK) cell education translates into increased responsiveness to activation; however, the intracellular mechanism for functional tuning by inhibitory receptors remains unclear. Secretory lysosomes are part of the acidic lysosomal compartment that mediates intracellular signalling in several cell types. Here we show that educated NK cells expressing self-MHC specific inhibitory killer cell immunoglobulin-like receptors (KIR) accumulate granzyme B in dense-core secretory lysosomes that converge close to the centrosome. This discrete morphological phenotype is independent of transcriptional programs that regulate effector function, metabolism and lysosomal biogenesis. Meanwhile, interference of signaling from acidic Ca2+ stores in primary NK cells reduces target-specific Ca2+-flux, degranulation and cytokine production. Furthermore, inhibition of PI(3,5)P2 synthesis, or genetic silencing of the PI(3,5)P2-regulated lysosomal Ca2+-channel TRPML1, leads to increased granzyme B and enhanced functional potential, thereby mimicking the educated state. These results indicate an intrinsic role for lysosomal remodeling in NK cell education.


Assuntos
Células Matadoras Naturais/metabolismo , Lisossomos/metabolismo , Aminopiridinas/farmacologia , Animais , Granzimas/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Células K562 , Células Matadoras Naturais/efeitos dos fármacos , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/efeitos dos fármacos , Camundongos , Receptores KIR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Gastroenterology ; 156(6): 1862-1876.e9, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30711630

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is often associated with hepatitis B virus (HBV) infection. Cells of most HBV-related HCCs contain HBV-DNA fragments that do not encode entire HBV antigens. We investigated whether these integrated HBV-DNA fragments encode epitopes that are recognized by T cells and whether their presence in HCCs can be used to select HBV-specific T-cell receptors (TCRs) for immunotherapy. METHODS: HCC cells negative for HBV antigens, based on immunohistochemistry, were analyzed for the presence of HBV messenger RNAs (mRNAs) by real-time polymerase chain reaction, sequencing, and Nanostring approaches. We tested the ability of HBV mRNA-positive HCC cells to generate epitopes that are recognized by T cells using HBV-specific T cells and TCR-like antibodies. We then analyzed HBV gene expression profiles of primary HCCs and metastases from 2 patients with HCC recurrence after liver transplantation. Using the HBV-transcript profiles, we selected, from a library of TCRs previously characterized from patients with self-limited HBV infection, the TCR specific for the HBV epitope encoded by the detected HBV mRNA. Autologous T cells were engineered to express the selected TCRs, through electroporation of mRNA into cells, and these TCR T cells were adoptively transferred to the patients in increasing numbers (1 × 104-10 × 106 TCR+ T cells/kg) weekly for 112 days or 1 year. We monitored patients' liver function, serum levels of cytokines, and standard blood parameters. Antitumor efficacy was assessed based on serum levels of alpha fetoprotein and computed tomography of metastases. RESULTS: HCC cells that did not express whole HBV antigens contained short HBV mRNAs, which encode epitopes that are recognized by and activate HBV-specific T cells. Autologous T cells engineered to express TCRs specific for epitopes expressed from HBV-DNA in patients' metastases were given to 2 patients without notable adverse events. The cells did not affect liver function over a 1-year period. In 1 patient, 5 of 6 pulmonary metastases decreased in volume during the 1-year period of T-cell administration. CONCLUSIONS: HCC cells contain short segments of integrated HBV-DNA that encodes epitopes that are recognized by and activate T cells. HBV transcriptomes of these cells could be used to engineer T cells for personalized immunotherapy. This approach might be used to treat a wider population of patients with HBV-associated HCC.


Assuntos
Carcinoma Hepatocelular/terapia , DNA Viral , Vírus da Hepatite B/genética , Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/terapia , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia/genética , Linfócitos T/imunologia , Transcriptoma/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Eletroporação , Epitopos de Linfócito T/biossíntese , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Antígenos da Hepatite B/genética , Antígenos da Hepatite B/imunologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Transplante de Fígado , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Biossíntese de Proteínas , RNA Viral/genética , Receptores de Antígenos de Linfócitos T , Integração Viral , alfa-Fetoproteínas/metabolismo
6.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518652

RESUMO

Distinct populations of hepatocytes infected with hepatitis B virus (HBV) or only harboring HBV DNA integrations coexist within an HBV chronically infected liver. These hepatocytes express HBV antigens at different levels and with different intracellular localizations, but it is not known whether this heterogeneity of viral antigen expression could result in an uneven hepatic presentation of distinct HBV epitopes/HLA class I complexes triggering different levels of activation of HBV-specific CD8+ T cells. Using antibodies specific to two distinct HLA-A*02:01/HBV epitope complexes of HBV nucleocapsid and envelope proteins, we mapped their topological distributions in liver biopsy specimens of two anti-hepatitis B e antigen-positive (HBe+) chronic HBV (CHB) patients. We demonstrated that the core and envelope CD8+ T cell epitopes were not uniformly distributed in the liver parenchyma but preferentially located in distinct and sometimes mutually exclusive hepatic zones. The efficiency of HBV epitope presentation was then tested in vitro utilizing HLA-A*02:01/HBV epitope-specific antibodies and the corresponding CD8+ T cells in primary human hepatocyte and hepatoma cell lines either infected with HBV or harboring HBV DNA integration. We confirmed the existence of a marked variability in the efficiency of HLA class I/HBV epitope presentation among the different targets that was influenced by the presence of gamma interferon (IFN-γ) and availability of newly translated viral antigens. In conclusion, HBV antigen presentation can be heterogeneous within an HBV-infected liver. As a consequence, CD8+ T cells of different HBV specificities might have different antiviral efficacies.IMPORTANCE The inability of patients with chronic HBV infection to clear HBV is associated with defective HBV-specific CD8+ T cells. Hence, the majority of immunotherapy developments focus on HBV-specific T cell function restoration. However, knowledge of whether distinct HBV-specific T cells can equally target all the HBV-infected hepatocytes of a chronically infected liver is lacking. In this work, analysis of CHB patient liver parenchyma and in vitro HBV infection models shows a nonuniform distribution of HBV CD8+ T cell epitopes that is influenced by the presence of IFN-γ and availability of newly translated viral antigens. These results suggest that CD8+ T cells recognizing different HBV epitopes can be necessary for efficient immune therapeutic control of chronic HBV infection.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Células Hep G2 , Hepatite B/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Interferon gama/metabolismo , Fígado/imunologia , Análise Espaço-Temporal
7.
Cancer Immunol Res ; 6(4): 467-480, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29459477

RESUMO

Natural killer (NK) cells hold potential as a source of allogeneic cytotoxic effector cells for chimeric antigen receptor (CAR)-mediated therapies. Here, we explored the feasibility of transfecting CAR-encoding mRNA into primary NK cells and investigated how the intrinsic potential of discrete NK-cell subsets affects retargeting efficiency. After screening five second- and third-generation anti-CD19 CAR constructs with different signaling domains and spacer regions, a third-generation CAR with the CH2-domain removed was selected based on its expression and functional profiles. Kinetics experiments revealed that CAR expression was optimal after 3 days of IL15 stimulation prior to transfection, consistently achieving over 80% expression. CAR-engineered NK cells acquired increased degranulation toward CD19+ targets, and maintained their intrinsic degranulation response toward CD19- K562 cells. The response of redirected NK-cell subsets against CD19+ targets was dependent on their intrinsic thresholds for activation determined through both differentiation and education by killer cell immunoglobulin-like receptors (KIR) and/or CD94/NKG2A binding to self HLA class I and HLA-E, respectively. Redirected primary NK cells were insensitive to inhibition through NKG2A/HLA-E interactions but remained sensitive to inhibition through KIR depending on the amount of HLA class I expressed on target cells. Adaptive NK cells, expressing NKG2C, CD57, and self-HLA-specific KIR(s), displayed superior ability to kill CD19+, HLA low, or mismatched tumor cells. These findings support the feasibility of primary allogeneic NK cells for CAR engineering and highlight a need to consider NK-cell diversity when optimizing efficacy of cancer immunotherapies based on CAR-expressing NK cells. Cancer Immunol Res; 6(4); 467-80. ©2018 AACR.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Eletroporação , Expressão Gênica , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores KIR/antagonistas & inibidores
8.
Cancer Immunol Res ; 5(8): 654-665, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28637877

RESUMO

Manipulation of human natural killer (NK) cell repertoires promises more effective strategies for NK cell-based cancer immunotherapy. A subset of highly differentiated NK cells, termed adaptive NK cells, expands naturally in vivo in response to human cytomegalovirus (HCMV) infection, carries unique repertoires of inhibitory killer cell immunoglobulin-like receptors (KIR), and displays strong cytotoxicity against tumor cells. Here, we established a robust and scalable protocol for ex vivo generation and expansion of adaptive NK cells for cell therapy against pediatric acute lymphoblastic leukemia (ALL). Culture of polyclonal NK cells together with feeder cells expressing HLA-E, the ligand for the activating NKG2C receptor, led to selective expansion of adaptive NK cells with enhanced alloreactivity against HLA-mismatched targets. The ex vivo expanded adaptive NK cells gradually obtained a more differentiated phenotype and were specific and highly efficient killers of allogeneic pediatric T- and precursor B-cell acute lymphoblastic leukemia (ALL) blasts, previously shown to be refractory to killing by autologous NK cells and the NK-cell line NK92 currently in clinical testing. Selective expansion of NK cells that express one single inhibitory KIR for self-HLA class I would allow exploitation of the full potential of NK-cell alloreactivity in cancer immunotherapy. In summary, our data suggest that adaptive NK cells may hold utility for therapy of refractory ALL, either as a bridge to transplant or for patients that lack stem cell donors. Cancer Immunol Res; 5(8); 654-65. ©2017 AACR.


Assuntos
Imunoterapia , Células Matadoras Naturais/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores KIR/imunologia , Imunidade Adaptativa , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Criança , Citomegalovirus/imunologia , Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/uso terapêutico , Humanos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores KIR/uso terapêutico , Antígenos HLA-E
9.
Cell Rep ; 15(5): 1088-1099, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27117418

RESUMO

Infection by human cytomegalovirus (HCMV) leads to NKG2C-driven expansion of adaptive natural killer (NK) cells, contributing to host defense. However, approximately 4% of all humans carry a homozygous deletion of the gene that encodes NKG2C (NKG2C(-/-)). Assessment of NK cell repertoires in 60 NKG2C(-/-) donors revealed a broad range of NK cell populations displaying characteristic footprints of adaptive NK cells, including a terminally differentiated phenotype, functional reprogramming, and epigenetic remodeling of the interferon (IFN)-γ promoter. We found that both NKG2C(-) and NKG2C(+) adaptive NK cells expressed high levels of CD2, which synergistically enhanced ERK and S6RP phosphorylation following CD16 ligation. Notably, CD2 co-stimulation was critical for the ability of adaptive NK cells to respond to antibody-coated target cells. These results reveal an unexpected redundancy in the human NK cell response to HCMV and suggest that CD2 provides "signal 2" in antibody-driven adaptive NK cell responses.


Assuntos
Imunidade Adaptativa/imunologia , Antígenos CD2/imunologia , Citomegalovirus/imunologia , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/deficiência , Receptores de IgG/genética , Receptores de IgG/metabolismo , Proteína S6 Ribossômica/metabolismo
10.
Exp Hematol ; 39(9): 904-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21703984

RESUMO

OBJECTIVE: Interleukin (IL)-15 is a promising novel cytokine for natural killer (NK) cell activation and survival. We studied the effects of IL-15 compared to IL-2 on NK cells in long-term cultures for clinical translation. MATERIALS AND METHODS: CD56(+)CD3(-) NK cells were expanded with IL-2 or IL-15 for 2 to 4 weeks within lymphokine-activated killer (LAK) cell cultures (LAK-NK) in serum-enriched AIM V or CellGro Stem Cell Growth Medium (SCGM). Cell growth, viability, and NK cell content were monitored and cytotoxicity assessed in a flow cytometric cytotoxicity assay. RESULTS: IL-15 (100-1000 U/mL) could replace IL-2 (1000 U/mL) in AIM V cultures to achieve efficient LAK cell expansion. However, IL-15-stimulated LAK cells exceeded cytotoxicity of IL-2-stimulated LAK cells against K562, notably at later culture points. In the powerful CellGro SCGM, LAK cells expanded over 28 days an average of 905-fold ± 320-fold standard error of the mean (SEM) for IL-2 (500 U/mL) and 484-fold ± 98-fold SEM for IL-15 (500 U/mL), and NK cells within such LAK cultures expanded an average of 2320-fold ± 975-fold SEM for IL-2 and 1084-fold ± 309-fold SEM for IL-15. Importantly, such IL-15-activated LAK-NK cells retained enhanced cytotoxicity at later culture points against K562 as well. IL-15-stimulated effectors were also highly cytotoxic against hematological targets MOLT-4 and KU812 and nontoxic against autologous nonmalignant cells. Interestingly, IL-15-LAK-NK cells showed overall significant upregulation of the main activating and inhibitory NK cell receptors after long-term cytokine stimulation. CONCLUSIONS: Our results demonstrate the potential for IL-15 to support large-scale expansion of clinical-grade LAK-NK effectors, which could retain enhanced longer-term potency and preserve activation receptors in therapy of hematological malignancies. Protocols are readily clinically translatable.


Assuntos
Neoplasias Hematológicas/terapia , Interleucina-15/fisiologia , Células Matadoras Naturais/citologia , Sangue , Linhagem Celular , Células Cultivadas , Citometria de Fluxo , Neoplasias Hematológicas/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...