Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Res Protoc ; 10(4): e27883, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908892

RESUMO

BACKGROUND: Application of pesticides in the vicinity of homes has caused concern regarding possible health effects in residents living nearby. However, the high spatiotemporal variation of pesticide levels and lack of knowledge regarding the contribution of exposure routes greatly complicates exposure assessment approaches. OBJECTIVE: The objective of this paper was to describe the study protocol of a large exposure survey in the Netherlands assessing pesticide exposure of residents living close (<250 m) to agricultural fields; to better understand possible routes of exposure; to develop an integrative exposure model for residential exposure; and to describe lessons learned. METHODS: We performed an observational study involving residents living in the vicinity of agricultural fields and residents living more than 500 m away from any agricultural fields (control subjects). Residential exposures were measured both during a pesticide use period after a specific application and during the nonuse period for 7 and 2 days, respectively. We collected environmental samples (outdoor and indoor air, dust, and garden and field soils) and personal samples (urine and hand wipes). We also collected data on spraying applications as well as on home characteristics, participants' demographics, and food habits via questionnaires and diaries. Environmental samples were analyzed for 46 prioritized pesticides. Urine samples were analyzed for biomarkers of a subset of 5 pesticides. Alongside the field study, and by taking spray events and environmental data into account, we developed a modeling framework to estimate environmental exposure of residents to pesticides. RESULTS: Our study was conducted between 2016 and 2019. We assessed 96 homes and 192 participants, including 7 growers and 28 control subjects. We followed 14 pesticide applications, applying 20 active ingredients. We collected 4416 samples: 1018 air, 445 dust (224 vacuumed floor, 221 doormat), 265 soil (238 garden, 27 fields), 2485 urine, 112 hand wipes, and 91 tank mixtures. CONCLUSIONS: To our knowledge, this is the first study on residents' exposure to pesticides addressing all major nondietary exposure sources and routes (air, soil, dust). Our protocol provides insights on used sampling techniques, the wealth of data collected, developed methods, modeling framework, and lessons learned. Resources and data are open for future collaborations on this important topic. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/27883.

2.
J Occup Med Toxicol ; 12: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234454

RESUMO

BACKGROUND: In most reported cases of lung trauma with water proofing products, volatile organic compounds (VOC) have a prominent role. Here we report on a case involving ten workers exposed to a sprayed product containing nanoparticles in a water solution with only a few percent VOC. CASE PRESENTATION: Ten workers suffered from respiratory symptoms following spray impregnation of hardwood furniture using a waterproofing product that contained positively charged fluorinated acrylate copolymer solid cores with a median diameter of 70 nm (1.3 w%) in aqueous suspension with 3.3 w% VOC and 0.3 w% quaternary ammonium. The worker who applied one liter of the product in a wood workshop, using an air mix spray gun, did not report any health complaints. Another worker, who entered the workshop 3 h later and had rolled and smoked two cigarettes, was hospitalized with severe chemical pneumonitis. A chest X-ray (CXR) showed bilateral infiltrative impairment in the lower lobe regions. On the next day a second CXR showed increased patchiness marking in all fields. A high-resolution Computer Tomography (CT)-scan demonstrated extensive bilateral areas of ground-glass opacities predominantly in the lower regions of the upper lobes, the right middle lobe and the apical regions of the lower lobes, compatible with severe chemical pneumonitis. On the following morning, nine workers in an adjacent workplace in the same building, experienced dry cough, chest tightness and substernal pain upon physical exercise. Reconstruction of the spray application in a climate chamber confirmed trimethyl silanol, glycol ethers and fluoroalkenes in the gas phase. Immediately after the spray application, aerosols were observed at a maximum concentration of 6.3 × 104 cm-3. Mass concentrations were 0.095 and 10 mg/m3 in the size ranges 5.6-560 nm and 0.22-30 µm, respectively, decreasing to less than 10 µg/m3 in both size ranges after 15 h. CONCLUSION: The hospitalized worker had smoked cigarettes contaminated with fluoropolymers which is a plausible explanation for the lung trauma. Respiratory symptoms in the nine workers may be caused by inhalation of particles that became airborne by resuspension from surfaces when workers entered the adjacent workplace the next day. A contribution from VOC appears less likely because measurements and modelling showed that concentrations in the mg/m3 range could have occurred only if the building was assumed to be completely airtight.

3.
Ann Work Expo Health ; 61(1): 98-109, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28395316

RESUMO

Background: Nano-specific inhalation exposure models could potentially be effective tools to assess and control worker exposure to nano-objects, and their aggregates and agglomerates (NOAA). However, due to the lack of reliable and consistent collected NOAA exposure data, the scientific basis for validation of the existing NOAA exposure models is missing or limited. The main objective of this study was to gain more insight into the effect of various determinants underlying the potential on the concentration of airborne NOAA close to the source with the purpose of providing a scientific basis for existing and future exposure inhalation models. Method: Four experimental studies were conducted to investigate the effect of 11 determinants of emission on the concentration airborne NOAA close to the source during dumping of ~100% nanopowders. Determinants under study were: nanomaterial, particle size, dump mass, height, rate, ventilation rate, mixing speed, containment, particle surface coating, moisture content of the powder, and receiving surface. The experiments were conducted in an experimental room (19.5 m3) with well-controlled environmental and ventilation conditions. Particle number concentration and size distribution were measured using real-time measurement devices. Results: Dumping of nanopowders resulted in a higher number concentration and larger particles than dumping their reference microsized powder (P < 0.05). Statistically significant more and larger particles were also found during dumping of SiO2 nanopowder compared to TiO2/Al2O3 nanopowders. Particle surface coating did not affect the number concentration but on average larger particles were found during dumping of coated nanopowders. An increase of the powder's moisture content resulted in less and smaller particles in the air. Furthermore, the results indicate that particle number concentration increases with increasing dump height, rate, and mass and decreases when ventilation is turned on. Discussion: These results give an indication of the direction and magnitude of the effect of the studied determinants on concentrations close to the source and provide a scientific basis for (further) development of existing and future NOAA inhalation exposure models.


Assuntos
Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise , Nanoestruturas/estatística & dados numéricos , Monitoramento Ambiental/instrumentação , Humanos , Modelos Teóricos , Exposição Ocupacional , Tamanho da Partícula , Dióxido de Silício/análise , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...