Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1541, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378758

RESUMO

Proteostasis can be disturbed by mutations affecting folding and stability of the encoded protein. An example is the ubiquitin ligase Parkin, where gene variants result in autosomal recessive Parkinsonism. To uncover the pathological mechanism and provide comprehensive genotype-phenotype information, variant abundance by massively parallel sequencing (VAMP-seq) is leveraged to quantify the abundance of Parkin variants in cultured human cells. The resulting mutational map, covering 9219 out of the 9300 possible single-site amino acid substitutions and nonsense Parkin variants, shows that most low abundance variants are proteasome targets and are located within the structured domains of the protein. Half of the known disease-linked variants are found at low abundance. Systematic mapping of degradation signals (degrons) reveals an exposed degron region proximal to the so-called "activation element". This work provides examples of how missense variants may cause degradation either via destabilization of the native protein, or by introducing local signals for degradation.


Assuntos
Transtornos Parkinsonianos , Proteostase , Humanos , Proteostase/genética , Ubiquitina-Proteína Ligases/metabolismo , Mutação , Transtornos Parkinsonianos/genética , Mutação de Sentido Incorreto , Proteínas/metabolismo
2.
NAR Cancer ; 5(4): zcad052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37829116

RESUMO

CIP2A is an inhibitor of the tumour suppressor protein phosphatase 2A. Recently, CIP2A was identified as a synthetic lethal interactor of BRCA1 and BRCA2 and a driver of basal-like breast cancers. In addition, a joint role of TopBP1 (topoisomerase IIß-binding protein 1) and CIP2A for maintaining genome integrity during mitosis was discovered. TopBP1 has multiple functions as it is a scaffold for proteins involved in DNA replication, transcriptional regulation, cell cycle regulation and DNA repair. Here, we briefly review details of the CIP2A-TopBP1 interaction, its role in maintaining genome integrity, its involvement in cancer and its potential as a therapeutic target.

3.
Nat Commun ; 12(1): 5748, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593815

RESUMO

Mutations in the tumour suppressor gene BRCA2 are associated with predisposition to breast and ovarian cancers. BRCA2 has a central role in maintaining genome integrity by facilitating the repair of toxic DNA double-strand breaks (DSBs) by homologous recombination (HR). BRCA2 acts by controlling RAD51 nucleoprotein filament formation on resected single-stranded DNA, but how BRCA2 activity is regulated during HR is not fully understood. Here, we delineate a pathway where ATM and ATR kinases phosphorylate a highly conserved region in BRCA2 in response to DSBs. These phosphorylations stimulate the binding of the protein phosphatase PP2A-B56 to BRCA2 through a conserved binding motif. We show that the phosphorylation-dependent formation of the BRCA2-PP2A-B56 complex is required for efficient RAD51 filament formation at sites of DNA damage and HR-mediated DNA repair. Moreover, we find that several cancer-associated mutations in BRCA2 deregulate the BRCA2-PP2A-B56 interaction and sensitize cells to PARP inhibition. Collectively, our work uncovers PP2A-B56 as a positive regulator of BRCA2 function in HR with clinical implications for BRCA2 and PP2A-B56 mutated cancers.


Assuntos
Proteína BRCA2/metabolismo , Neoplasias da Mama/genética , Neoplasias Ovarianas/genética , Proteína Fosfatase 2/metabolismo , Reparo de DNA por Recombinação , Proteína BRCA2/genética , Quebras de DNA de Cadeia Dupla , Feminino , Predisposição Genética para Doença , Células HeLa , Humanos , Mutação , Fosforilação/genética , Ligação Proteica/genética , Proteína Fosfatase 2/genética , Rad51 Recombinase/metabolismo
4.
Front Genet ; 12: 695172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354738

RESUMO

Common chromosomal fragile sites (CFSs) are genomic regions prone to form breaks and gaps on metaphase chromosomes during conditions of replication stress. Moreover, CFSs are hotspots for deletions and amplifications in cancer genomes. Fragility at CFSs is caused by transcription of extremely large genes, which contributes to replication problems. These extremely large genes do not encode large proteins, but the extreme sizes of the genes originate from vast introns. Intriguingly, the intron sizes of extremely large genes are conserved between mammals and birds. Here, we have used reverse genetics to address the function and significance of the largest intron in the extremely large gene PRKN, which is highly fragile in our model system. Specifically, we have introduced an 80-kilobase deletion in intron 7 of PRKN. We find that gene expression of PRKN is largely unaffected by this intronic deletion. Strikingly, the intronic deletion, which leads to a 12% reduction of the overall size of the PRKN gene body, results in an almost twofold reduction of the PRKN fragility. Our results stress that while the large intron clearly contributes to the fragility of PRKN, it does not play an important role for PRKN expression. Taken together, our findings further add to the mystery concerning conservation of the seemingly non-functional but troublesome large introns in PRKN.

5.
Semin Cell Dev Biol ; 113: 57-64, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32912640

RESUMO

TopBP1/Rad4/Dpb11 is an essential eukaryotic protein with important roles in DNA replication, DNA repair, DNA damage checkpoint activation, and chromosome segregation. TopBP1 serves as a scaffold to assemble protein complexes in a phosphorylation-dependent manner via its multiple BRCT-repeats. Recently, it has become clear that TopBP1 is repurposed to scaffold different processes dependent on cell cycle regulated changes in phosphorylation of client proteins. Here we review the functions of human TopBP1 in maintaining genome integrity during mitosis.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Genômica/métodos , Mitose/genética , Proteínas Nucleares/genética , Humanos
6.
Cell Rep ; 32(1): 107849, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640219

RESUMO

Replication-blocking DNA lesions are particularly toxic to proliferating cells because they can lead to chromosome mis-segregation if not repaired prior to mitosis. In this study, we report that ZGRF1 null cells accumulate chromosome aberrations following replication perturbation and show sensitivity to two potent replication-blocking anticancer drugs: mitomycin C and camptothecin. Moreover, ZGRF1 null cells are defective in catalyzing DNA damage-induced sister chromatid exchange despite accumulating excessive FANCD2, RAD51, and γ-H2AX foci upon induction of interstrand DNA crosslinks. Consistent with a direct role in promoting recombinational DNA repair, we show that ZGRF1 is a 5'-to-3' helicase that catalyzes D-loop dissociation and Holliday junction branch migration. Moreover, ZGRF1 physically interacts with RAD51 and stimulates strand exchange catalyzed by RAD51-RAD54. On the basis of these data, we propose that ZGRF1 promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Membrana/metabolismo , Reparo de DNA por Recombinação , Biocatálise , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Reagentes de Ligações Cruzadas/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Recombinação Homóloga , Humanos , Proteínas de Membrana/deficiência , Mitomicina/farmacologia , Rad51 Recombinase/metabolismo , Fase S/efeitos dos fármacos
7.
Nucleic Acids Res ; 48(10): 5467-5484, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329774

RESUMO

Transcription-replication (T-R) conflicts are profound threats to genome integrity. However, whilst much is known about the existence of T-R conflicts, our understanding of the genetic and temporal nature of how cells respond to them is poorly established. Here, we address this by characterizing the early cellular response to transient T-R conflicts (TRe). This response specifically requires the DNA recombination repair proteins BLM and BRCA2 as well as a non-canonical monoubiquitylation-independent function of FANCD2. A hallmark of the TRe response is the rapid co-localization of these three DNA repair factors at sites of T-R collisions. We find that the TRe response relies on basal activity of the ATR kinase, yet it does not lead to hyperactivation of this key checkpoint protein. Furthermore, specific abrogation of the TRe response leads to DNA damage in mitosis, and promotes chromosome instability and cell death. Collectively our findings identify a new role for these well-established tumor suppressor proteins at an early stage of the cellular response to conflicts between DNA transcription and replication.


Assuntos
Replicação do DNA , Reparo de DNA por Recombinação , Transcrição Gênica , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA2/fisiologia , Linhagem Celular , Sobrevivência Celular , Quinase 9 Dependente de Ciclina/metabolismo , DNA/metabolismo , Dano ao DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Humanos , Mitose/genética , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , RecQ Helicases/fisiologia , Ubiquitinação
8.
Genes (Basel) ; 9(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486458

RESUMO

In order to pass on an intact copy of the genome during cell division, complete and faithful DNA replication is crucial. Yet, certain areas of the genome are intrinsically challenging to replicate, which manifests as high local mutation propensity. Such regions include trinucleotide repeat sequences, common chromosomal fragile sites (CFSs), and early replicating fragile sites (ERFSs). Despite their genomic instability CFSs are conserved, suggesting that they have a biological function. To shed light on the potential function of CFSs, this review summarizes the similarities and differences of the regions that challenge DNA replication with main focus on CFSs. Moreover, we review the mechanisms that operate when CFSs fail to complete replication before entry into mitosis. Finally, evolutionary perspectives and potential physiological roles of CFSs are discussed with emphasis on their potential role in neurogenesis.

9.
Nucleic Acids Res ; 46(3): 1280-1294, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29253234

RESUMO

Common Chromosomal Fragile Sites (CFSs) are specific genomic regions prone to form breaks on metaphase chromosomes in response to replication stress. Moreover, CFSs are mutational hotspots in cancer genomes, showing that the mutational mechanisms that operate at CFSs are highly active in cancer cells. Orthologs of human CFSs are found in a number of other mammals, but the extent of CFS conservation beyond the mammalian lineage is unclear. Characterization of CFSs from distantly related organisms can provide new insight into the biology underlying CFSs. Here, we have mapped CFSs in an avian cell line. We find that, overall the most significant CFSs coincide with extremely large conserved genes, from which very long transcripts are produced. However, no significant correlation between any sequence characteristics and CFSs is found. Moreover, we identified putative early replicating fragile sites (ERFSs), which is a distinct class of fragile sites and we developed a fluctuation analysis revealing high mutation rates at the CFS gene PARK2, with deletions as the most prevalent mutation. Finally, we show that avian homologs of the human CFS genes despite their fragility have resisted the general intron size reduction observed in birds suggesting that CFSs have a conserved biological function.


Assuntos
Proteínas Aviárias/genética , Linfócitos B/metabolismo , Sítios Frágeis do Cromossomo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas Aviárias/metabolismo , Linfócitos B/patologia , Sítios de Ligação , Linhagem Celular Transformada , Galinhas , Mapeamento Cromossômico , Sequência Conservada , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Metáfase , Anotação de Sequência Molecular , Mutação , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
10.
Bio Protoc ; 7(9): e2259, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34541246

RESUMO

During mitosis chromosomes are condensed into dense X-shaped structures that allow for microscopic determination of karyotype as well as inspection of chromosome morphology. This protocol describes a method to perform immunostaining of formaldehyde-fixed metaphase chromosomes from the avian cell line DT40. It was developed to characterize the localization of YFP-tagged TopBP1 on mitotic chromosomes and specifically determine the percentage of TopBP1 foci that formed on breaks/gaps as well as ends of individual metaphase macrochromosomes ( Pedersen et al., 2015 ). For this purpose immunostaining of YFP was applied. However, the protocol may be optimized for other cell lines or epitopes.

11.
Chromosoma ; 126(2): 213-222, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27796495

RESUMO

Collision between the molecular machineries responsible for transcription and replication is an important source of genome instability. Certain transcribed regions known as chromosomal fragile sites are particularly prone to recombine and mutate in a manner that correlates with specific transcription and replication patterns. At the same time, these chromosomal fragile sites engage in aberrant DNA structures in mitosis. Here, we discuss the mechanistic details of transcription-replication conflicts including putative scenarios for R-loop-induced replication inhibition to understand how transcription-replication conflicts transition from S phase into various aberrant DNA structures in mitosis.


Assuntos
Divisão Celular/genética , Sítios Frágeis do Cromossomo , Replicação do DNA , Transcrição Gênica , Animais , Humanos , Mitose/genética
12.
Mol Cell Oncol ; 3(2): e1093066, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27308615

RESUMO

Mitosis is the process responsible for segregation of the duplicated genome into 2 new daughter cells. We recently identified an important function of the protein TopBP1 during mitosis by showing that TopBP1 suppresses transmission of DNA damage to daughter cells. Here, we further discuss the implications of our findings.

13.
DNA Repair (Amst) ; 40: 67-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26994443

RESUMO

The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2(-/-) and RNF8(-/-) cells and HERC2(-/-)/RNF8(-/-) double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2(-/-) and RNF8(-/-) mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks.


Assuntos
Replicação do DNA , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Galinhas , Dano ao DNA , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Mutação , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Raios Ultravioleta
14.
J Cell Biol ; 212(3): 281-8, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811421

RESUMO

Topoisomerase IIß-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase-mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1's role in HR, with potential clinical implications for cancer treatment.


Assuntos
Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rad51 Recombinase/metabolismo , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Rad51 Recombinase/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Quinase 1 Polo-Like
15.
Cell Cycle ; 15(2): 176-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26701150

RESUMO

Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.


Assuntos
Proteínas de Transporte/genética , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Mitose , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Galinhas , DNA/metabolismo , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação
16.
J Cell Biol ; 210(4): 565-82, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26283799

RESUMO

Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fase G1 , Mitose , Proteínas Nucleares/fisiologia , Proteínas Aviárias/fisiologia , Núcleo Celular/metabolismo , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Fase G2 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transporte Proteico , Recombinases/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
17.
Mol Cell ; 54(5): 858-69, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24905007

RESUMO

Fanconi anaemia (FA) is a cancer predisposition syndrome characterized by cellular sensitivity to DNA interstrand crosslinkers. The molecular defect in FA is an impaired DNA repair pathway. The critical event in activating this pathway is monoubiquitination of FANCD2. In vivo, a multisubunit FA core complex catalyzes this step, but its mechanism is unclear. Here, we report purification of a native avian FA core complex and biochemical reconstitution of FANCD2 monoubiquitination. This demonstrates that the catalytic FANCL E3 ligase subunit must be embedded within the complex for maximal activity and site specificity. We genetically and biochemically define a minimal subcomplex comprising just three proteins (FANCB, FANCL, and FAAP100) that functions as the monoubiquitination module. Residual FANCD2 monoubiquitination activity is retained in cells defective for other FA core complex subunits. This work describes the in vitro reconstitution and characterization of this multisubunit monoubiquitin E3 ligase, providing key insight into the conserved FA DNA repair pathway.


Assuntos
Proteínas Aviárias/metabolismo , Galinhas/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Ubiquitinação , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Linhagem Celular , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação L da Anemia de Fanconi/química , Proteína do Grupo de Complementação L da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Humanos , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
18.
J Cell Biol ; 204(1): 45-59, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24379413

RESUMO

DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination.


Assuntos
Anáfase/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Galinhas , Cromatina/genética , Cromatina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
DNA Repair (Amst) ; 11(11): 892-905, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23010445

RESUMO

The ubiquitylation cascade plays an important role in the recruitment of repair factors at DNA double-strand breaks. The involvement of a growing number of ubiquitin E3 ligases adds to the complexity of the DNA damage-induced ubiquitin signaling. Here we use the genetically tractable avian cell line DT40 to investigate the role of HERC2, RNF8 and RNF168 in the DNA damage-induced ubiquitylation pathway. We show that formation of ubiquitin foci as well as cell survival after DNA damage depends on both RNF8 and RNF168. However, we find that RNF8 and RNF168 knockout cell lines respond differently to treatment with camptothecin indicating that they do not function in a strictly linear manner. Surprisingly, we show that HERC2 is required neither for survival nor for ubiquitin foci formation after DNA damage in DT40. Moreover, the E3 ubiquitin ligase activity of HERC2 is not redundant to that of RNF8 or RNF168.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Animais , Camptotecina/toxicidade , Linhagem Celular , Sobrevivência Celular , Galinhas , Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
20.
DNA Repair (Amst) ; 10(2): 210-24, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21130053

RESUMO

DPB11/TopBP1 is an essential evolutionarily conserved gene involved in initiation of DNA replication and checkpoint signaling. Here, we show that Saccharomyces cerevisiae Dpb11 forms nuclear foci that localize to sites of DNA damage in G1, S and G2 phase, a recruitment that is conserved for its homologue TopBP1 in Gallus gallus. Damage-induced Dpb11 foci are distinct from Sld3 replication initiation foci. Further, Dpb11 foci are dependent on the checkpoint proteins Mec3 (9-1-1 complex) and Rad24, and require the C-terminal domain of Dpb11. Dpb11 foci are independent of the checkpoint kinases Mec1 and Tel1, and of the checkpoint mediator Rad9. In a site-directed mutagenesis screen, we identify a separation-of-function mutant, dpb11-PF, that is sensitive to DSB-inducing agents yet remains proficient for DNA replication and the S-phase checkpoint at the permissive temperature. The dpb11-PF mutant displays altered rates of heteroallelic and direct-repeat recombination, sensitivity to DSB-inducing drugs as well as delayed kinetics of mating-type switching with a defect in the DNA synthesis step thus implicating Dpb11 in homologous recombination. We conclude that Dpb11/TopBP1 plays distinct roles in replication, checkpoint response and recombination processes, thereby contributing to chromosomal stability.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Instabilidade Cromossômica , Replicação do DNA , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Animais , Proteínas de Ciclo Celular/genética , Galinhas/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Fase G2 , Genes cdc , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Mutagênese Sítio-Dirigida , Fase S , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...