Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(20): 9754-9769, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625086

RESUMO

Pnictogen nanomaterials have recently attracted researchers' attention owing to their promising properties in the field of electronic, energy storage, and nanomedicine applications. Moreover, especially in the case of heavy pnictogens, their chemistry allows for nanomaterial synthesis using both top-down and bottom-up approaches, yielding materials with remarkable differences in terms of morphology, size, yield, and properties. In this study, we carried out a comprehensive structural and spectroscopic characterization of antimony-based nanomaterials (Sb-nanomaterials) obtained by applying different production methodologies (bottom-up and top-down routes) and investigating the influence of the synthesis on their oxidation state and stability in a biological environment. Indeed, in situ XANES/EXAFS studies of Sb-nanomaterials incubated in cell culture media were carried out, unveiling a different oxidation behavior. Furthermore, we investigated the cytotoxic effects of Sb-nanomaterials on six different cell lines: two non-cancerous (FSK and HEK293) and four cancerous (HeLa, SKBR3, THP-1, and A549). The results reveal that hexagonal antimonene (Sb-H) synthesized using a colloidal approach oxidizes the most and faster in cell culture media compared to liquid phase exfoliated (LPE) antimonene, suffering acute degradation and anticipating well-differentiated toxicity from its peers. In addition, the study highlights the importance of the synthetic route for the Sb-nanomaterials as it was observed to influence the chemical evolution of Sb-H into toxic Sb oxide species, playing a critical role in its ability to rapidly eliminate tumor cells. These findings provide insights into the mechanisms underlying the dark cytotoxicity of Sb-H and other related Sb-nanomaterials, underlining the importance of developing therapies based on controlled and on-demand nanomaterial oxidation.


Assuntos
Antimônio , Nanoestruturas , Oxirredução , Humanos , Antimônio/química , Nanoestruturas/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Células A549
2.
Chemistry ; 30(5): e202303146, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37967023

RESUMO

Nickel-based layered hydroxides (LHs) are a family of efficient electrocatalysts for the alkaline oxygen evolution reaction (OER). Nevertheless, fundamental aspects such as the influence of the crystalline structure and the role of lattice distortion of the catalytic sites remain poorly understood and typically muddled. Herein, we carried out a comprehensive investigation on ɑ-LH, ß-LH and layered double hydroxide (LDH) phases by means of structural, spectroscopical, in-silico and electrochemical studies, which suggest the key aspect exerted by Ni-vacancies in the ɑ-LH structure. Density functional theory (DFT) calculations and X-ray absorption spectroscopy (XAS) confirm that the presence of Ni-vacancies produces acute distortions of the electroactive Ni sites (reflected as the shortening of the Ni-O distances and changes in the O-Ni-O angles), triggering the appearance of Ni localised electronic states on the Fermi level, reducing the Egap, and consequently, increasing the reactivity of the electroactive sites in the ɑ-LH structure. Furthermore, post-mortem Raman and XAS measurements unveil its transformation into a highly reactive oxyhydroxide-like phase that remains stable under ambient conditions. Hence, this work pinpoints the critical role of the crystalline structure as well as the electronic properties of LH structures on their inherent electrochemical reactivity towards OER catalysis. We envision Ni-based ɑ-LH as a perfect platform for hosting trivalent cations, closing the gap toward the next generation of benchmark efficient earth-abundant electrocatalysts.

3.
Small ; 20(20): e2307621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38111987

RESUMO

Layered double hydroxides (LDHs) are a class of functional materials that exhibit exceptional properties for diverse applications in areas such as heterogeneous catalysis, energy storage and conversion, and bio-medical applications, among others. Efforts have been devoted to produce millimeter-scale LDH structures for direct integration into functional devices. However, the controlled synthesis of self-supported continuous LDH materials with hierarchical structuring up to the millimeter scale through a straightforward one-pot reaction method remains unaddressed. Herein, it is shown that millimeter-scale self-supported LDH structures can be produced by means of a continuous flow microfluidic device in a rapid and reproducible one-pot process. Additionally, the microfluidic approach not only allows for an "on-the-fly" formation of unprecedented LDH composite structures, but also for the seamless integration of millimeter-scale LDH structures into functional devices. This method holds the potential to unlock the integrability of these materials, maintaining their performance and functionality, while diverging from conventional techniques like pelletization and densification that often compromise these aspects. This strategy will enable exciting advancements in LDH performance and functionality.

4.
Beilstein J Nanotechnol ; 14: 927-938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736659

RESUMO

Research on two-dimensional materials is one of the most relevant fields in materials science. Layered double hydroxides (LDHs), a versatile class of anionic clays, exhibit great potential in photocatalysis, energy storage and conversion, and environmental applications. However, its implementation in real-life devices requires the development of efficient and reproducible large-scale synthesis processes. Unfortunately, reliable methods that allow for the production of large quantities of two-dimensional LDHs with well-defined morphologies and high crystallinity are very scarce. In this work, we carry out a scale-up of the urea-based CoAl-LDH synthesis method. We thoroughly study the effects of the mass scale-up (25-fold: up to 375 mM) and the volumetric scale-up (20-fold: up to 2 L). For this, we use a combination of several structural (XRD, TGA, and N2 and CO2 isotherms), microscopic (SEM, TEM, and AFM), magnetic (SQUID), and spectroscopic techniques (ATR-FTIR, UV-vis, XPS, ICP-MS, and XANES-EXAFS). In the case of the volumetric scale-up, a reduction of 45% in the lateral dimensions of the crystals (from 3.7 to 2.0 µm) is observed as the reaction volume increases. This fact is related to modified heating processes affecting the alkalinization rates and, concomitantly, the precipitation, even under recrystallization at high temperatures. In contrast, for the tenfold mass scale-up, similar morphological features were observed and assigned to changes in nucleation and growth. However, at higher concentrations, simonkolleite-like Co-based layered hydroxide impurities are formed, indicating a phase competition during the precipitation related to the thermodynamic stability of the growing phases. Overall, this work demonstrates that it is possible to upscale the synthesis of high-quality hexagonal CoAl-LDH in a reproducible manner. It highlights the most critical synthesis aspects that must be controlled and provides various fingerprints to trace the quality of these materials. These results will contribute to bringing the use of these 2D layered materials closer to reality in different applications of interest.

5.
ACS Catal ; 13(15): 10351-10363, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37560192

RESUMO

Cobalt-based layered hydroxides (LHs) stand out as one of the best families of electroactive materials for the alkaline oxygen evolution reaction (OER). However, fundamental aspects such as the influence of the crystalline structure and its connection with the geometry of the catalytic sites remain poorly understood. Thus, to address this topic, we have conducted a thorough experimental and in silico study on the most important divalent Co-based LHs (i.e., α-LH, ß-LH, and LDH), which allows us to understand the role of the layered structure and coordination environment of divalent Co atoms on the OER performance. The α-LH, containing both octahedral and tetrahedral sites, behaves as the best OER catalyst in comparison to the other phases, pointing out the role of the chemical nature of the crystalline structure. Indeed, density functional theory (DFT) calculations confirm the experimental results, which can be explained in terms of the more favorable reconstruction into an active Co(III)-based oxyhydroxide-like phase (dehydrogenation process) as well as the significantly lower calculated overpotential across the OER mechanism for the α-LH structure (exhibiting lower Egap). Furthermore, ex situ X-ray diffraction and absorption spectroscopy reveal the permanent transformation of the α-LH phase into a highly reactive oxyhydroxide-like stable structure under ambient conditions. Hence, our findings highlight the key role of tetrahedral sites on the electronic properties of the LH structure as well as their inherent reactivity toward OER catalysis, paving the way for the rational design of more efficient and low-maintenance electrocatalysts.

6.
J Am Chem Soc ; 145(23): 12487-12498, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261429

RESUMO

High-quality devices based on layered heterostructures are typically built from materials obtained by complex solid-state physical approaches or laborious mechanical exfoliation and transfer. Meanwhile, wet-chemically synthesized materials commonly suffer from surface residuals and intrinsic defects. Here, we synthesize using an unprecedented colloidal photocatalyzed, one-pot redox reaction a few-layers bismuth hybrid of "electronic grade" structural quality. Intriguingly, the material presents a sulfur-alkyl-functionalized reconstructed surface that prevents it from oxidation and leads to a tuned electronic structure that results from the altered arrangement of the surface. The metallic behavior of the hybrid is supported by ab initio predictions and room temperature transport measurements of individual nanoflakes. Our findings indicate how surface reconstructions in two-dimensional (2D) systems can promote unexpected properties that can pave the way to new functionalities and devices. Moreover, this scalable synthetic process opens new avenues for applications in plasmonics or electronic (and spintronic) device fabrication. Beyond electronics, this 2D hybrid material may be of interest in organic catalysis, biomedicine, or energy storage and conversion.

7.
Chem Commun (Camb) ; 59(43): 6453-6474, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37084083

RESUMO

The layered allotropes of group 15 (P, As, Sb and Bi), also called two-dimensional (2D) pnictogens, have emerged as one of the most promising families of post-graphene 2D-materials. This is mainly due to the great variety of properties they exhibit, including layer-dependent bandgap, high charge-carrier mobility and current on/off ratios, strong spin-orbit coupling, wide allotropic diversity and pronounced chemical reactivity. These are key ingredients for exciting applications in (opto)electronics, heterogeneous catalysis, nanomedicine or energy storage and conversion, to name a few. However, there are still many challenges to overcome in order to fully understand their properties and bring them to real applications. As a matter of fact, due to their strong interlayer interactions, the mechanical exfoliation (top-down) of heavy pnictogens (Sb & Bi) is unsatisfactory, requiring the development of new methodologies for the isolation of single layers and the scalable production of high-quality flakes. Moreover, due to their pronounced chemical reactivity, it is necessary to develop passivation strategies, thus preventing environmental degradation, as in the case of bP, or controlling surface oxidation, with the corresponding modification of the interfacial and electronic properties. In this Feature Article we will discuss, among others, the most important contributions carried out in our group, including new liquid phase exfoliation (LPE) processes, bottom-up colloidal approaches, the preparation of intercalation compounds, innovative non-covalent and covalent functionalization protocols or novel concepts for potential applications in catalysis, electronics, photonics, biomedicine or energy storage and conversion. The past years have seen the birth of the chemistry of pnictogens at the nanoscale, and this review intends to highlight the importance of the chemical approach in the successful development of routes to synthesise, passivate, modify, or process these materials, paving the way for their use in applications of great societal impact.

8.
Dalton Trans ; 51(12): 4675-4684, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212688

RESUMO

Among the two-dimensional (2D) materials family, layered double hydroxides (LDHs) represent a key member due to their unparalleled chemical versatility. In particular, Fe-based LDHs are distinguished candidates due to their high efficiency as oxygen evolution reaction (OER) electrocatalysts. Herein, we have selected MgFe-based LDH phases as model systems in order to decipher whether Fe-clustering exerts an effect on the OER performance. For that, we have optimized hydrothermal synthesis by using triethanolamine (TEA) as the chelating agent. The magnetic characterisation allows us to identify the Fe-clustering degree by following both magnetic susceptibility as well as magnetization values at 2 K. Thanks to this, we demonstrated that TEA induces an increment in Fe-clustering. Electrochemical OER measurements show that both samples behave identically by using glassy carbon electrodes. Interestingly, when the samples are tested in the most commonly employed electrode, nickel foam, striking differences arise. The sample exhibiting a lower Fe-clustering behaves as a better electrocatalyst with a reduction of the overpotential values of more than 50 mV to reach 100 mA cm-2, as a consequence of a favoured surface transformation of MgFe-LDHs phases into more reactive oxyhydroxide NiFe-based phases during the electrochemical tests. Hence, this work alerts about the importance of the electrocatalyst-electrode collector interactions which can induce misinterpretations in the OER performance.

9.
Angew Chem Int Ed Engl ; 60(52): 27312-27317, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34672406

RESUMO

Ruddlesden-Popper lead halide perovskite (RP-LHP) nano-nanostructures can be regarded as self-assembled quantum wells or superlattices of 3D perovskites with an intrinsic quantum well thickness of a single or a few (n=2-4) lead halide layers; the quantum wells are separated by organic layers. They can be scaled down to a single quantum well dimension. Here, the preparation of highly (photo)chemical and colloidal stable hybrid LHP nanosheets (NSs) of ca. 7.4 µm lateral size and 2.5 nm quantum well height (thereby presenting a deep blue emission at ca. 440 nm), is reported for the first time. The NSs are close-lying and they even interconnect when deposited on a substrate. Their synthesis is based on the use of the p-toluenesulfonic acid/dodecylamine (pTS/DDA) ligand pair and their (photo)chemical stability and photoluminescence is enhanced by adding EuBr2 nanodots (EuNDs). Strikingly, they can be preserved as a solid and stored for at least one year. The blue emissive colloid can be recovered from the solid as needed by simply dispersing the powder in toluene and then using it to prepare solid films, making them very promising candidates for manufacturing devices.

10.
Chemistry ; 27(39): 10077-10086, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33890346

RESUMO

Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications, such as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. In this work, the epoxide route was adapted for the synthesis of pure and stable ACP colloids. By using biocompatible solvents, such as ethylene glycol and/or glycerine, it was possible to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface.


Assuntos
Fosfatos de Cálcio , Compostos de Epóxi , Apatitas , Fosfatos , Solventes
11.
Chemistry ; 27(3): 921-927, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32767611

RESUMO

A dramatic change in the magnetic behaviour, which solely depends on the parity of the organic linker molecules, has been found in a family of layered CoII hydroxides covalently functionalized with dicarboxylic molecules. These layered hybrid materials have been synthesized at room temperature using a one-pot procedure through the epoxide route. While hybrids connected by odd alkyl chains exhibit coercive fields (Hc ) below ca. 3500 Oe and show spontaneous magnetization at temperatures (TM ) below 20 K, hybrids functionalized with even alkyl chains behave as hard magnets with Hc >5500 Oe and display a TM higher than 55 K. This intriguing behaviour was studied by density functional theory with the incorporation of a Hubbard term (DFT+U) calculations, unveiling the structural subtleties underlying this observation. Indeed, the different molecular orientation exhibited by the even/odd alkyl chains, and the orientation of the covalently linked carboxylic groups modify the intensity of the magnetic coupling of both octahedral and tetrahedral in-plane sublattices, thus strongly affecting the magnetic properties of the hybrid. These findings offer an outstanding level of tuning in the molecular design of hybrid magnetic materials based on layered hydroxides.

12.
Anal Chem ; 92(20): 13656-13660, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32951419

RESUMO

Monitoring chemical reactions that occur in small spaces or confined environments is challenging. Surface-enhanced Raman scattering (SERS) spectroscopy offers the unique possibility to monitor spectral changes with high sensitivity and time resolution. Herein, we report the application of composite mesoporous TiO2 films loaded with Ag nanoparticles (NPs) to track in situ chemical processes in real time. In particular, the AgNPs@TiO2 system was employed to monitor two chemical reactions: one occurring on the Ag NPs surface and another taking place in the surrounding solution. In the first case, we monitored the decarboxylation reaction of 4-mercaptobenzoic acid on Ag NPs, which allowed us to identify the conditions that favor it. In the second case, we studied the pH evolution in the nanocavities during a homogeneous alkalization process driven by chloride-assisted glycidol rupture (the Epoxide Route) and compared it with pH measurements by conventional techniques. We therefore demonstrated that the proposed nanodevice provides an excellent performance to monitor dynamic processes occurring either inside the material or in the solution in which it is immersed.

13.
Waste Manag ; 117: 9-17, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805603

RESUMO

One of the current challenges in circular economy is the ability to transform waste into valuable products. In this work, waste of electrical and electronic equipment (WEEE) was used as a gold source to prepare stable gold nanoparticles (AuNP). The proposed methodology involves a series of physical and chemical separation steps, carefully designed according to the complex nature of the selected WEEE and the targeted product. In a first step, pins from microprocessors were separated by mechanical treatments, allowing to concentrate gold in a metallic fraction. A two-step hydrometallurgical method was subsequently performed, to obtain a Au (III) enriched solution. Such solution was used as a secondary raw material to obtain AuNP. For that purpose, a specific synthetic method was developed, adapted to the high acidity and ionic strength of the solution. Thanks to the use of two easily available reducing agents (sodium citrate and ascorbic acid) and a polymeric stabilizer (PVP), it was possible to obtain high purity AuNP presenting a mixture of well-defined spherical and triangular shapes. These AuNP were finally deposited onto glass substrates and present a sensitive response to refractive index changes in the environment, a necessary condition towards application in optical sensors. In summary, this upcycling case study demonstrates that e-waste can successfully replace primary raw materials to obtain highly valuable and useful nanomaterials. These results highlight the potential of urban mining as a sustainable and circular approach to the development of nanotechnologies.


Assuntos
Resíduo Eletrônico/análise , Nanopartículas Metálicas , Ouro , Reciclagem , Substâncias Redutoras
14.
Chemistry ; 26(71): 17081-17090, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32721065

RESUMO

Co- and Ni-based layered hydroxides constitute a unique class of two-dimensional inorganic materials with exceptional chemical diversity, physicochemical properties and outstanding performance as supercapacitors and overall water splitting catalysts. Recently, the occurrence of Co(III) in these phases has been proposed as a key factor that enhance their electrochemical performance. However, the origin of this centers and control over its contents remains as an open question. We employed the Epoxide Route to synthesize a whole set of α-NiCo layered hydroxides. The PXRD and XAS characterization alert about the occurrence of Co(III) as a consequence of the increment in the Ni content. DFT+U simulation suggest that the shortening of the Co-O distance promotes a structural distortion in the Co environments, resulting in a double degeneration in the octahedral Co 3d orbitals. Hence, a strong modification of the electronic properties leaves the system prone to oxidation, by the appearance of Co localized electronic states on the Fermi level. This work combines a microscopic interpretation supported by a multiscale crystallochemical analysis, regarding the so-called synergistic redox behavior of Co and Ni, offering fundamental tools for the controllable design of highly efficient electroactive materials. To the best of our knowledge, this is the first computational-experimental investigation of the electronic and structural details of α-NiCo hydroxides, laying the foundation for the fine tuning of electronic properties in layered hydroxides.

15.
Chemistry ; 26(29): 6504-6517, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32053228

RESUMO

Layered double hydroxides (LDHs) are a class of 2D anionic materials exhibiting wide chemical versatility and promising applications in different fields, ranging from catalysis to energy storage and conversion. However, the covalent chemistry of this kind of 2D materials is still barely explored. Herein, the covalent functionalization with silanes of a magnetic NiFe-LDH is reported. The synthetic route consists of a topochemical approach followed by anion exchange reaction with surfactant molecules prior to covalent functionalization with the (3-aminopropyl)triethoxysilane (APTES) molecules. The functionalized NiFe-APTES was fully characterized by X-ray diffraction, infrared spectroscopy, electron microscopy, thermogravimetric analysis coupled with mass spectrometry and 29 Si solid-state nuclear magnetic resonance, among others. The effect on the electronic properties of the functionalized LDH was investigated by a magnetic study in combination with Mössbauer spectroscopy. Moreover, the reversibility of the silane-functionalization at basic pH was demonstrated, and the quality of the resulting LDH was proven by studying the electrochemical performance in the oxygen evolution reaction in basic media. Furthermore, the anion exchange capability for the NiFe-APTES was tested employing CrVI , resulting in an increase of 200 % of the anion retention. This report allows for a new degree of tunability of LDHs, opening the door to the synthesis of new hybrid architectures and materials.

16.
Chemistry ; 26(14): 3157-3165, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31917493

RESUMO

A new one-pot homogeneous methodology at room temperature to obtain Au nanoparticles (AuNP) on the basis of the epoxide route is presented. The proposed method takes advantage of the homogenous generation of OH- moieties driven by epoxide ring-opening, mediated by chloride nucleophilic attack. Once reached alkaline conditions, the reducing medium allows the quantitative formation of AuNP under well-defined kinetic control. A stabilizing agent, such as polyvinylpyrrolidone (PVP) or cetyltrimethylammonium chloride (CTAC), is required to maintain the AuNP stable. Meanwhile their presence dramatically affects the reduction kinetics and pathway, as demonstrated by the evolution of the UV/Vis spectra, small-angle X-ray scattering (SAXS) patterns, and pH value along the reaction. In the presence of PVP nanogold spheroids are obtained following a similar reduction mechanism as that observed for control experiments in the absence of PVP. However, if CTAC is employed a stable complex with AuIII is formed, leading to a different reaction pathway and resulting in ellipsoidal-like shaped AuNP. Moreover, the proposed methodology allows stabilize the growing AuNP, by coupling their formation with nonalkoxidic sol-gel reactions, leading to nanocomposite gels with embedded metallic nanoparticles. The epoxide route thus offers a versatile scenario for the one-pot preparation of new metal nanoparticles-inorganic/hybrid matrices nanocomposites with valuable optical properties.

17.
Chem Sci ; 11(29): 7626-7633, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-34094140

RESUMO

NiFe-carbon magnetic nanocomposites prepared using hybrid sebacate intercalated layered double hydroxides (LDHs) as precursors are shown to be of interest as supercapacitors. Here, the low-temperature formation mechanism of these materials has been deciphered by means of a combined study using complementary in situ (temperature-dependent) techniques. Specifically, studies involving X-ray powder diffraction, thermogravimetry coupled to mass spectrometry (TG-MS), statistical Raman spectroscopy (SRS), aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) have been carried out. The experimental results confirm the early formation of FeNi3 nanoparticles at ca. 200-250 °C, preceding the concerted collapse of the starting NiFe-LDH laminar structure over just 50 °C (from 350 to 400 °C). At the same time, the catalytic interactions between the metallic atoms and the organic molecules permit the concomitant formation of a graphitic carbon matrix leading to the formation of the final FeNi3-carbon nanocomposite. Furthermore, in situ temperature-dependent experiments in the presence of the intrinsic magnetic field of the STEM-EELS allow observing the complete metal segregation of Ni and Fe even at 400 °C. These results provide fundamental insights into the catalytic formation of carbon-based nanocomposites using LDHs as precursors and pave the way for the fine-tuning of their properties, with special interest in the field of energy storage and conversion.

18.
ChemSusChem ; 12(21): 4882-4888, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31424166

RESUMO

The market for products based on nanotechnology, and with it the use of nanomaterials and the generation of nanowaste, increases day by day. Among the vast variety of nanomaterials available, gold nanoparticles (AuNPs) are among the most studied and applied in commercial products. This current situation requires both the development of recovery methods to reduce the amount of nanowaste produced, and new synthetic methods that allow the reuse of recovered gold for new nanomaterial production, keeping in mind both economical and ecological considerations. In this work, a methodology to recover gold from aqueous laboratory nanowaste and transform it into an aqueous HAuCl4 solution was developed, using extremely simple procedures and readily available chemical reagents (NaCl, HCl, H2 O2 ) and allowing the recovery of more than 99 % of the original gold. The experiments were performed by using both simulated and real laboratory nanowastes, and practically the same results were obtained. Moreover, the subsequent use of the obtained aqueous HAuCl4 solution from the recovered gold to produce spherical AuNPs through a seed-mediated approach was demonstrated. Thus, this work presents for the first time a complete recycling cycle from nanowaste to the reagent and back to the nanomaterial.

19.
Chemistry ; 25(54): 12611-12619, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31274214

RESUMO

Epoxide ring opening driven alkalinization process was explored with the aim of preparing layered double hydroxide (LDH) phases on demand, at room temperature. Employing iodide as nucleophilic agent, the precipitation reaction can be driven under much lower halide concentrations. This scenario favors the selective intercalation of concomitant bulky oxo anions as nitrate or perchlorate in the LDH products, allowing for the one-pot synthesis of an LDH able to delaminate in formamide. Even large dicarboxylic acids, - O2 C-(CH2 )n -CO2 - , with n up to 8, can be quantitively intercalated within the growing LDH phase, providing a versatile one-pot route for hybrid LDHs as well. Under the mild conditions employed, governed by a continuous pH rise from a starting acid condition, a MII to M*III ratio of 2 prevails, independently from the overall cationic composition. However, after moderate hydrothermal aging LDH phases bearing a cationic ratio higher than 2 could result. The solubility of a given chloride-containing MII 2 M*III LDH can be approximated as a linear combination of the solubility of the pure hydroxylated phases of the constitutive cations, M(OH)2 and M* (OH)3 .

20.
Inorg Chem ; 58(14): 9414-9424, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31276381

RESUMO

The present study introduces a comprehensive exploration in terms of physicochemical characterization and calculations based on density functional theory with Hubbard's correction (DFT+U) of the whole family of α-Co(II) hydroxyhalide (F, Cl, Br, I). These samples were synthesized at room temperature by employing a one-pot approach based on the epoxide route. A thorough characterization (powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis/mass spectroscopy, and magnetic and conductivity measurements) corroborated by simulation is presented that analyzes the structural, magnetic, and electronic aspects. Beyond the inherent tendency of intercalated anions to modify the interlayer distance, the halide's nature has a marked effect on several aspects. Such as the modulation of the CoOh to CoTd ratio, as well as the inherent tendency towards dehydration and irreversible decomposition. Whereas the magnetic behavior is strongly correlated with the CoTd amount reflected in the presence of glassy behavior with high magnetic disorder, the electrical properties depend mainly on the nature of the halide. The computed electronic structures suggest that the CoTd molar fraction exerts a minor effect on the inherent conductivity of the phases. However, the band gap of the solid turns out to be significantly dependent on the nature of the incorporated halide, governed by ligand to metal charge transfer, which minimizes the gap as the anionic radius becomes larger. Conductivity measurements of pressed pellets confirm this trend. To the best of our knowledge, this is the first report on the magnetic and electrical properties of α-Co(II) hydroxyhalides validated with in silico descriptions, opening the gate for the rational design of layered hydroxylated phases with tunable electrical, optical, and magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...