Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691264

RESUMO

Brown rot decay is an important disease of pome and stone fruits. In Italy, the main pathogens on stone fruits are Monilinia laxa, M. fructigena, and M. fructicola (Spitaler et al. 2022a). In addition, Monilinia polystroma (G. Leeuwen) L. M. Kohn (van Leeuwen et al. 2002), was recently found in Italy on peach (Martini et al. 2014), pear (Martini et al. 2015), plum (Abate et al. 2018), apple (Rosati et al. 2021), and quince (Spitaler et al. 2022b). In South Tyrol province, sweet cherry (Prunus avium L.) and almond (Prunus dulcis Mill. D. A. Webb), plants of the Rosaceae family and belonging to stone fruits, were observed to be frequently affected by brown rot. Affected cherries as well as almonds showed brown lesions, covered by yellowish or buff-colored stroma in concentric rings. Symptomatic cherries became shriveled, while symptomatic almonds remained firm. To determine the pathogen, single spore isolates were obtained from five symptomatic fruits, each from a cherry orchard of the cultivar Kordia in July 2021 and almond trees of the variety Dulcis in August 2021. Both sample sites were situated in Vadena/Pfatten. Infestation in the cherry orchard, covered by a rain-protection foil, was determined to be about 1 %. In almond, over 50 % of the fruits of various ripening stages showed brown rot symptoms. On potato dextrose agar (PDA) at 22 °C and a photoperiod of 16 h, isolates from both fruits matched the morphological characteristics of M. polystroma (Vasic et al. 2016) within 14 days. DNA was extracted from mycelium and the rRNA encoding gene region using ITS4 and ITS6 primers as well as a genomic sequence of unknown function using the primers UniMon_Forw and UniMon_Rev (Petróczy et al. 2012), were amplified and sequenced. MegaBLAST analysis revealed 100 % identity with M. polystroma sequences of the NCBI GenBank (rRNA encoding region: NR_154198; genomic region: JN128836). Sequences were deposited in GenBank under the accession numbers OP642545/OP654171 (cherry) and OP642546/OP654172 (almond). Pathogenicity was confirmed with mature cherries cultivar Duroncino or almost mature almond fruit of the variety Dulcis, respectively: 16 samples each for both fruits were surface-sterilized by dipping in 75 % ethanol for 10 s and subsequent rinsing with sterile water for 10 s. Mycelial plugs (1 mm) were dislodged from a 7-day old colony and inserted in a 1 mm hole into the fruits. Incubation was performed in plastic boxes under the conditions described above. PDA-inoculated fruit were used as controls. All cherries and all almonds were completely covered by brown rot lesions 7 days and 15 days post inoculation, respectively. Control fruits remained symptomless. Conidia were produced in branched chains on mycelium-inoculated fruit. Conidia were one-celled, limoniform, hyaline, measuring 13.1 to 22.2 × 9.7 to 14.8 µm (cherry) and 14.1 to 20.8 × 10.7 to 15.3 µm (almond). Additionally, 16 fruits each were inoculated with 20 µL conidial suspension (5 x 10^3 spores/mL) from mycelium-inoculated fruits. All cherries as well as all almonds were completely covered by brown rot lesions 7 days and 15 days post inoculation. Control fruits remained symptomless. To confirm identity, the fungus was isolated from five spore-inoculated fruits each for cherry and almond. The isolates showed identical morphological features and sequence identity as the original isolates. To our knowledge, this is also the first report of M. polystroma on almond, while the pathogen has already been reported on sweet cherry in Poland (Poniatowska et al. 2016). These additional host plants identified in this study suggest a broad impact of M. polystroma on Italian stone fruit production. Due to the economically important cultivation of stone fruit, further knowledge about the pathogens' host range will help to assign brown rot symptoms to M. polystroma and to improve targeted control strategies.

2.
Plant Dis ; 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997675

RESUMO

Apple (Malus × domestica Borkh.) is economically the most important fruit crop in South Tyrol (Italy). At the end of the growing season 2020, necrotic lesions and chlorosis developed on leaves and premature leaf dropping was observed on the cultivars Gala, Granny Smith and Cripps Pink(cov)/Rosy Glow(cov) in the Etsch/Adige valley. After the appearance of these symptoms, small circular brownish spots were observed on above 90 % of apples in the respective orchards. Fungal isolates were obtained from symptomatic apples by culturing small portions of fruit flesh from the lesion margin on potato dextrose agar (PDA) at 25°C in the dark. The colonies showed a white to peachy color on the upper surface and were greyish on the reverse side. Conidia were cylindrical, predominantly rounded and averaged 16.39 ± 1.37 µm and 5.75 ± 0.81 µm (n = 33), consistent morphological characteristics as described recently in Fuentes-Aragón et al. (2021). A multi-locus sequence analysis according to Astolfi et al. (2022) and Weir et al. (2022) was conducted based on the internal transcribed spacer (ITS) region and on fragments of actin (ACT), DNA-(apurinic or apyrimidinic site) lyase (APN2), calmodulin (CAL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamine synthetase (GS), beta-tubulin (TUB2), and intergenic spacer and partial mating type (Mat1-2) genes. MegaBlast analysis revealed 100 % identity to the reference genome of C. chrysophilum for ITS (NR_160821), for ACT (KX093982), APN2 (KX094018), CAL (KX094063), GAPDH (KX094183), 99.29 % for TUB2 (KX094285), 99.85 % for Mat1-2 (KX094325) and 99.87 % for GS (KX094204). Sequences were deposited in GenBank (ITS: OK485032; ACT: OK539650; APN2: ON624100; CAL: ON624104; GAPDH: OK539654; GS: ON624108; TUB2: OK539658; Mat1-2: ON645973). Pathogenicity assays were performed on wounded and unwounded apples of cvs. Gala and Rosy Glow(cov). Apples of both cvs. were wounded with a sterile needle. For each variant, 8 fruits were inoculated with 10 µL spore suspension (1 × 106 spores mL-1) in 0.05 % Tween®20 or with 10 µL 0.05 % Tween®20 as control. The apples were put into plastic boxes containing moist tissue and incubated at 25°C, 100 % relative humidity and 12 h photoperiod. First lesions appeared on inoculated wounded fruits after 5 days, whereas unwounded and control fruits remained asymptomatic. After 15 days, symptoms could be observed only on inoculated wounded apples with spore suspension: on 95 % of individual wounds of Rosy Glow(cov) and on 77.5 % of Gala. Koch's postulates were fulfilled by re-isolating the fungus and by identifying the re-isolates as C. chrysophilum (ITS: OK485033-OK485035; ACT: OK539651-OK539653; APN2: ON624101-ON624103; CAL: ON624105-ON624107; GAPDH: OK539655-OK539657; GS: ON624109; TUB2: OK539659-OK539661; Mat1-2: ON645974-ON645976). To date, only one study confirmed C. chrysophilum as causal agent of apple bitter rot in Europe (Cabrefiga et al. 2022). Recently, Astolfi et al. (2022) reclassified C. chrysophilum as the main causal agent of GLS on apples in Southern Brazil and Uruguay. The authors stressed that C. chrysophilum might also be the potential agent of GLS in Europe (Astolfi et al. 2022). This confirms the observations made in 2020 in South Tyrol, where massive leaf spots preceded the symptoms on fruit. To the best of our knowledge, this is the first report of a preharvest decay on apples caused by C. chrysophilum in Italy (South Tyrol).

3.
Phytochemistry ; 200: 113241, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35597313

RESUMO

Phytochemical investigations of dichloromethane and methanol extracts of roots and rhizomes of Scirpoides holoschoenus afforded 21 stilbenes, six flavonoids, six ferulic acid derivatives and four diterpenes. Among these constituents, six stilbenes, one flavonoid, one diterpene and two ferulic acid derivatives, represent previously unreported natural products. Structure elucidation was performed by HRESI-MS, NMR, GC-MS, and ECD data evaluation. The monoprenylated flavonoid (sophoraflavanone B) and all isolated stilbene oligomers (trans-scirpusin B, scirpusin A, cassigarol E, cyperusphenol B, cyperusphenol D, passiflorinol A, cyperusphenol A and mesocyperusphenol A) showed strong inhibitory activities on spore germination of two Botrytis cinerea strains isolated from field-infected grape berries and apple fruits compared to the reference controls resveratrol, piceid, and fenhexamid at a test concentration of 2.0 mM. For sophoraflavanone B and cyperusphenol A, the EC50 values were determined by concentration response curves and resulted in values of 0.35 mM and 0.53 mM, respectively. The data suggest that stilbene oligomers but also prenylated flavonoids should be examined further to gain more information on their antimicrobial activity and might be a suitable addition to chemical fungicides on the market to combat gray mold.


Assuntos
Cyperaceae , Diterpenos , Estilbenos , Vitis , Botrytis , Flavonoides/química , Resveratrol , Estilbenos/química
4.
J Agric Food Chem ; 69(48): 14445-14458, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808059

RESUMO

Alternaria sp. infections on apple (Malus × domestica Borkh.) lead to impaired fruit quality and yield losses by leaf blotches and fruit spots, caused by host-specific toxins (HSTs) of the Alternaria apple pathotype like AM-toxins. Fungal isolates were obtained during severe outbreaks on cv. Gala, Golden Delicious, and Cripps Pink(cov)/Rosy Glow(cov) in South Tyrol and other regions in northern Italy. The isolates were tested for pathogenicity using in vitro assays with detached apple leaves. Conidial suspensions of pathogenic isolates were shown to provoke necrotic lesions also in apple seedlings and on fruits. Detached-leaf assay-guided fractionation of the isolates' culture supernatant and a high-resolution liquid chromatography-mass spectrometry (LC-MS) analysis tentatively identified 27 known Alternaria phytotoxins and a new putative toxin, (3ξ,4ξ,5ξ,6ξ,7ξ,11ξ)-3,6-dihydroxy-8-oxo-9-eremophilene-12-oic acid (1). The constitution and the relative configuration of the ring stereocenters of 1 were elucidated by NMR spectroscopy, revealing unique structural features among Alternaria phytotoxins. Indeed, molecular analysis revealed the lack of the toxin-related genes AMT1, AMT4, and AMT14 in all isolates from the region, suggesting that Alternaria apple blotch in the area was associated with another metabolite (1).


Assuntos
Alternaria , Malus , Alternaria/genética , Frutas , Doenças das Plantas
5.
J Econ Entomol ; 108(5): 2174-83, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26453706

RESUMO

The psyllid species Cacopsylla melanoneura (Förster) and Cacopsylla picta (Förster) are vectors of 'Candidatus Phytoplasma mali', the causal agent of apple proliferation, one of the economically most important apple diseases in Europe. Both vectors are present in apple orchards of South Tyrol and Trentino provinces in Northern Italy. As no direct treatment of the disease is possible, monitoring of the psyllids provides information about the vector presence in the orchards and enables targeted control. Thus, fast and reliable identification of the various psyllids occurring in the apple orchards is required. Morphological differentiation is problematic due to extensive resemblance of some psyllid species especially among females and is error-prone for nymphs. Here we present a rapid and cost-effective polymerase chain reaction-restriction fragment length polymorphism method based on the cytochrome c oxidase subunit I region for the molecular identification of the vector species as well as eight further Cacopsylla species present in the orchards. This method was verified through 98.9% consensus with morphologically identified males, through sequencing and subsequent phylogenetic analysis. In case of doubtful morphological identification of females, the method was able to provide a refined species assignment and could also remarkably facilitate the identification of nymphs.


Assuntos
Hemípteros/classificação , Hemípteros/genética , Malus/microbiologia , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/genética , Insetos Vetores/classificação , Insetos Vetores/genética , Insetos Vetores/crescimento & desenvolvimento , Itália , Masculino , Ninfa/classificação , Ninfa/genética , Filogenia , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...