Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1869): 20210453, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36511415

RESUMO

Reaching objects in a dynamic environment requires fast online corrections that compensate for sudden object shifts or postural changes. Previous studies revealed the key role of visually monitoring the hand-to-target distance throughout action execution. In the current study, we investigate how sensorimotor asymmetries associated with space perception, brain lateralization and biomechanical constraints, affect the efficiency of online corrections. Participants performed reaching actions in virtual reality, where the virtual hand was progressively displaced from the real hand to trigger online corrections, for which it was possible to control the total amount of the redirection and the region of space in which the action unfolded. The efficiency of online corrections and the degree of awareness of the ensuing motor corrections were taken as assessment variables. Results revealed more efficient visuo-motor corrections for actions redirected towards, rather than away from the body midline. The effect is independent on the reaching hand and the hemispace of action, making explanations associated with laterality effects and biomechanical constraints improbable. The result cannot either be accounted for by the visual processing advantage in the straight-ahead region. An explanation may be found in the finer sensorimotor representations characterizing the frontal space proximal to body, where a preference for visual processing has been documented, and where high-value functional actions, like fine manipulative skills, typically take place. This article is part of a discussion meeting issue 'New approaches to 3D vision'.


Assuntos
Desempenho Psicomotor , Percepção Visual , Humanos , Mãos , Lateralidade Funcional , Força da Mão , Movimento
2.
IEEE Trans Vis Comput Graph ; 28(11): 3810-3820, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044497

RESUMO

Virtual Reality (VR) provides new possibilities for modern knowledge work. However, the potential advantages of virtual work environments can only be used if it is feasible to work in them for an extended period of time. Until now, there are limited studies of long-term effects when working in VR. This paper addresses the need for understanding such long-term effects. Specifically, we report on a comparative study $i$, in which participants were working in VR for an entire week-for five days, eight hours each day-as well as in a baseline physical desktop environment. This study aims to quantify the effects of exchanging a desktop-based work environment with a VR-based environment. Hence, during this study, we do not present the participants with the best possible VR system but rather a setup delivering a comparable experience to working in the physical desktop environment. The study reveals that, as expected, VR results in significantly worse ratings across most measures. Among other results, we found concerning levels of simulator sickness, below average usability ratings and two participants dropped out on the first day using VR, due to migraine, nausea and anxiety. Nevertheless, there is some indication that participants gradually overcame negative first impressions and initial discomfort. Overall, this study helps lay the groundwork for subsequent research, by clearly highlighting current shortcomings and identifying opportunities for improving the experience of working in VR.


Assuntos
Gráficos por Computador , Realidade Virtual , Humanos , Interface Usuário-Computador
3.
IEEE Trans Vis Comput Graph ; 28(5): 2069-2079, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167458

RESUMO

Virtual Reality (VR) has the potential to support mobile knowledge workers by complementing traditional input devices with a large three-dimensional output space and spatial input. Previous research on supporting VR knowledge work explored domains such as text entry using physical keyboards and spreadsheet interaction using combined pen and touch input. Inspired by such work, this paper probes the VR design space for authoring presentations in mobile settings. We propose PoVRPoint-a set of tools coupling pen- and touch-based editing of presentations on mobile devices, such as tablets, with the interaction capabilities afforded by VR. We study the utility of extended display space to, for example, assist users in identifying target slides, supporting spatial manipulation of objects on a slide, creating animations, and facilitating arrangements of multiple, possibly occluded shapes or objects. Among other things, our results indicate that 1) the wide field of view afforded by VR results in significantly faster target slide identification times compared to a tablet-only interface for visually salient targets; and 2) the three-dimensional view in VR enables significantly faster object reordering in the presence of occlusion compared to two baseline interfaces. A user study further confirmed that the interaction techniques were found to be usable and enjoyable.


Assuntos
Interface Usuário-Computador , Realidade Virtual , Gráficos por Computador , Humanos , Tato
4.
Nat Commun ; 12(1): 4758, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362893

RESUMO

Shape displays enable people to touch simulated surfaces. A common architecture of such devices uses a mechatronic pin-matrix. Besides their complexity and high cost, these matrix displays suffer from sharp edges due to the discreet representation which reduces their ability to render a large continuous surface when sliding the hand. We propose using an engineered auxetic material actuated by a smaller number of motors. The material bends in multiple directions, feeling smooth and rigid to touch. A prototype implementation uses nine actuators on a 220 mm square section of material. It can display a range of surface curvatures under the palm of a user without aliased edges. In this work we use an auxetic skeleton to provide rigidity on a soft material and demonstrate the potential of this class of surface through user experiments.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33017290

RESUMO

Virtual Reality (VR) has the potential to transform knowledge work. One advantage of VR knowledge work is that it allows extending 2D displays into the third dimension, enabling new operations, such as selecting overlapping objects or displaying additional layers of information. On the other hand, mobile knowledge workers often work on established mobile devices, such as tablets, limiting interaction with those devices to a small input space. This challenge of a constrained input space is intensified in situations when VR knowledge work is situated in cramped environments, such as airplanes and touchdown spaces. In this paper, we investigate the feasibility of interacting jointly between an immersive VR head-mounted display and a tablet within the context of knowledge work. Specifically, we 1) design, implement and study how to interact with information that reaches beyond a single physical touchscreen in VR; 2) design and evaluate a set of interaction concepts; and 3) build example applications and gather user feedback on those applications.

6.
IEEE Trans Vis Comput Graph ; 26(5): 2023-2029, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32070973

RESUMO

Through avatar embodiment in Virtual Reality (VR) we can achieve the illusion that an avatar is substituting our body: the avatar moves as we move and we see it from a first person perspective. However, self-identification, the process of identifying a representation as being oneself, poses new challenges because a key determinant is that we see and have agency in our own face. Providing control over the face is hard with current HMD technologies because face tracking is either cumbersome or error prone. However, limited animation is easily achieved based on speaking. We investigate the level of avatar enfacement, that is believing that a picture of a face is one's own face, with three levels of facial animation: (i) one in which the facial expressions of the avatars are static, (ii) one in which we implement lip-sync motion and (iii) one in which the avatar presents lip-sync plus additional facial animations, with blinks, designed by a professional animator. We measure self-identification using a face morphing tool that morphs from the face of the participant to the face of a gender matched avatar. We find that self-identification on avatars can be increased through pre-baked animations even when these are not photorealistic nor look like the participant.


Assuntos
Gráficos por Computador , Face/fisiologia , Ilusões/fisiologia , Identificação Social , Realidade Virtual , Adulto , Expressão Facial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Jogos de Vídeo
7.
IEEE Trans Vis Comput Graph ; 25(11): 3190-3201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31403423

RESUMO

Physical keyboards are common peripherals for personal computers and are efficient standard text entry devices. Recent research has investigated how physical keyboards can be used in immersive head-mounted display-based Virtual Reality (VR). So far, the physical layout of keyboards has typically been transplanted into VR for replicating typing experiences in a standard desktop environment. In this paper, we explore how to fully leverage the immersiveness of VR to change the input and output characteristics of physical keyboard interaction within a VR environment. This allows individual physical keys to be reconfigured to the same or different actions and visual output to be distributed in various ways across the VR representation of the keyboard. We explore a set of input and output mappings for reconfiguring the virtual presentation of physical keyboards and probe the resulting design space by specifically designing, implementing and evaluating nine VR-relevant applications: emojis, languages and special characters, application shortcuts, virtual text processing macros, a window manager, a photo browser, a whack-a-mole game, secure password entry and a virtual touch bar. We investigate the feasibility of the applications in a user study with 20 participants and find that, among other things, they are usable in VR. We discuss the limitations and possibilities of remapping the input and output characteristics of physical keyboards in VR based on empirical findings and analysis and suggest future research directions in this area.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30440314

RESUMO

Recent smartphones have the potential to bring camera oximetry to everyone using their powerful sensors and the capability to process measurements in real-time, potentially augmenting people's lives through always-available oximetry monitoring everywhere. The challenge of camera oximetry on smartphones is the low contrast between reflections from oxyhemoglobin and deoxyhemoglobin. In this paper, we show that this is the result of using the camera flash for illumination, which illuminates evenly across bands than thus leads to the diminished contrast in reflections. Instead, we propose capturing pulse using the front-facing camera and illuminating with the phone's display, a selective illuminant in the red, green, and blue band. We evaluate the spectral characteristics of the phone display using a spectroradiometer in a controlled experiment, convolve them with the sensitivity curves of the phone's camera, and show that the screen's narrow-band display illumination increases the contrast between the reflections in the desired bands by a factor of two compared to flash illumination. Our preliminary evaluation showed further support for our approach and findings.


Assuntos
Smartphone , Cor , Frequência Cardíaca , Humanos , Oximetria , Oxiemoglobinas/análise
9.
Sci Robot ; 3(17)2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33141738

RESUMO

During teleoperation and virtual reality experiences, enhanced haptic feedback incongruent with other sensory cues can reduce subjective realism, producing an uncanny valley of haptics.

10.
IEEE Comput Graph Appl ; 38(6): 125-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30668459

RESUMO

Virtual reality has the potential to change the way we work. We envision the future office worker to be able to work productively everywhere solely using portable standard input devices and immersive head-mounted displays. Virtual reality has the potential to enable this, by allowing users to create working environments of their choice and by relieving them from physical world limitations, such as constrained space or noisy environments. In this paper, we investigate opportunities and challenges for realizing this vision and discuss implications from recent findings of text entry in virtual reality as a core office task.

11.
IEEE Trans Pattern Anal Mach Intell ; 28(7): 1150-63, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16792103

RESUMO

Video stabilization is an important video enhancement technology which aims at removing annoying shaky motion from videos. We propose a practical and robust approach of video stabilization that produces full-frame stabilized videos with good visual quality. While most previous methods end up with producing smaller size stabilized videos, our completion method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. To achieve this, motion inpainting is proposed to enforce spatial and temporal consistency of the completion in both static and dynamic image areas. In addition, image quality in the stabilized video is enhanced with a new practical deblurring algorithm. Instead of estimating point spread functions, our method transfers and interpolates sharper image pixels of neighboring frames to increase the sharpness of the frame. The proposed video completion and deblurring methods enabled us to develop a complete video stabilizer which can naturally keep the original image quality in the stabilized videos. The effectiveness of our method is confirmed by extensive experiments over a wide variety of videos.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Pinturas , Fotografação/métodos , Gravação em Vídeo/métodos , Artefatos , Gráficos por Computador , Movimento (Física) , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...