Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 142: 103722, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063675

RESUMO

Tetranychus urticae is a polyphagous spider mite that can feed on more than 1100 plant species including cyanogenic plants. The herbivore genome contains a horizontally acquired gene tetur10g01570 (TuCAS) that was previously shown to participate in cyanide detoxification. To understand the structure and determine the function of TuCAS in T. urticae, crystal structures of the protein with lysine conjugated pyridoxal phosphate (PLP) were determined. These structures reveal extensive TuCAS homology with the ß-substituted alanine synthase family, and they show that this enzyme utilizes a similar chemical mechanism involving a stable α-aminoacrylate intermediate in ß-cyanoalanine and cysteine synthesis. We demonstrate that TuCAS is more efficient in the synthesis of ß-cyanoalanine, which is a product of the detoxification reaction between cysteine and cyanide, than in the biosynthesis of cysteine. Also, the enzyme carries additional enzymatic activities that were not previously described. We show that TuCAS can detoxify cyanide using O-acetyl-L-serine as a substrate, leading to the direct formation of ß-cyanoalanine. Moreover, it catalyzes the reaction between the TuCAS-bound α-aminoacrylate intermediate and aromatic compounds with a thiol group. In addition, we have tested several compounds as TuCAS inhibitors. Overall, this study identifies additional functions for TuCAS and provides new molecular insight into the xenobiotic metabolism of T. urticae.


Assuntos
Liases , Tetranychidae , Animais , Cianetos/metabolismo , Cisteína , Liases/química , Liases/genética , Liases/metabolismo , Plantas/metabolismo , Tetranychidae/metabolismo
2.
J Immunol ; 203(9): 2545-2556, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554696

RESUMO

Der p 2 is one of the most important allergens from the house dust mite Dermatophagoides pteronyssinus Identification of human IgE Ab binding epitopes can be used for rational design of allergens with reduced IgE reactivity for therapy. Antigenic analysis of Der p 2 was performed by site-directed mutagenesis based on the x-ray crystal structure of the allergen in complex with a Fab from the murine IgG mAb 7A1 that binds an epitope overlapping with human IgE binding sites. Conformational changes upon Ab binding were confirmed by nuclear magnetic resonance using a 7A1-single-chain variable fragment. In addition, a human IgE Ab construct that interferes with mAb 7A1 binding was isolated from a combinatorial phage-display library constructed from a mite-allergic patient and expressed as two recombinant forms (single-chain Fab in Pichia pastoris and Fab in Escherichia coli). These two IgE Ab constructs and the mAb 7A1 failed to recognize two Der p 2 epitope double mutants designed to abolish the allergen-Ab interaction while preserving the fold necessary to bind Abs at other sites of the allergen surface. A 10-100-fold reduction in binding of IgE from allergic subjects to the mutants additionally showed that the residues mutated were involved in IgE Ab binding. In summary, mutagenesis of a Der p 2 epitope defined by x-ray crystallography revealed an IgE Ab binding site that will be considered for the design of hypoallergens for immunotherapy.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Sítios de Ligação de Anticorpos , Dessensibilização Imunológica/métodos , Imunoglobulina E/imunologia , Anticorpos Monoclonais/química , Antígenos de Dermatophagoides/química , Proteínas de Artrópodes/química , Cristalografia por Raios X , Epitopos/imunologia , Humanos , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/imunologia
3.
Biochim Biophys Acta Proteins Proteom ; 1866(12): 1209-1215, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30278288

RESUMO

Vibrio vulnificus, a gram-negative bacterium, is the leading cause of seafood-borne illnesses and mortality in the United States. Previous studies have identified metabolites 2-C-methylerythritol 4-phosphate (MEP) as being essential for V. vulnificus growth and function. It was shown that 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) is a critical enzyme in the viability of V. vulnificus, and many other bacteria, as it catalyzes the rearrangement of 1-deoxy-D-xylulose-5-phosphate (Dxp) to 2-C-methylerythritol 4-phosphate (MEP) within the MEP pathway, found in plants and bacteria. The MEP pathway produces the isoprenoids, isopentenyl diphosphate and dimethylallyl pyrophosphate. In this study, we produced and structurally characterized V. vulnificus Dxr. The enzyme forms a dimeric assembly and contains a metal ion in the active site. Protein produced in Escherichia coli co-purifies with Mg2+ ions, however the Mg2+ cations may be substituted with Mn2+, as both of these metals may be utilized by Dxrs. These findings will provide a basis for the design of Dxr inhibitors that may find application as antimicrobial compounds.


Assuntos
Aldose-Cetose Isomerases/química , Proteínas de Bactérias/química , Vibrio vulnificus/enzimologia , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Eritritol/análogos & derivados , Eritritol/metabolismo , Manganês/química , Manganês/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Fosfatos Açúcares/metabolismo
4.
ACS Omega ; 3(1): 760-768, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29399652

RESUMO

For years, the use of polyhistidine tags (His-tags) has been a staple in the isolation of recombinant proteins in immobilized metal affinity chromatography experiments. Their usage has been widely beneficial in increasing protein purity from crude cell lysates. For some recombinant proteins, a consequence of His-tag addition is that it can affect protein function and stability. Functional proteins are essential in the elucidation of their biological, kinetic, structural, and thermodynamic properties. In this study, we determine the effect of N-terminal His-tags on the thermal stability of select proteins using differential scanning fluorimetry and identify that the removal of the His-tag can have both beneficial and deleterious effects on their stability.

5.
FEBS J ; 284(15): 2425-2441, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28618168

RESUMO

Streptococcus pyogenes, also known as Group A Strep (GAS), is an obligate human pathogen that is responsible for millions of infections and numerous deaths per year. Infection manifestations can range from simple, acute pharyngitis to more complex, necrotizing fasciitis. To date, most treatments for GAS infections involve the use of common antibiotics including tetracycline and clindamycin. Unfortunately, new strains have been identified that are resistant to these drugs, therefore, new targets must be identified to treat drug-resistant strains. This work is focused on the structural and functional characterization of three proteins: spNadC, spNadD, and spNadE. These enzymes are involved in the biosynthesis of nicotinamide adenine dinucleotide (NAD+ ). The structures of spNadC and spNadE were determined. SpNadC is suggested to play a role in GAS virulence, while spNadE, functions as an NAD synthetase and is considered to be a new drug target. Determination of the spNadE structure uncovered a putative, NH3 channel, which may provide insight into the mechanistic details of NH3 -dependent NAD+ synthetases in prokaryotes. ENZYMES: Quinolinate phosphoribosyltransferase: EC2.4.2.19 and NAD synthetase: EC6.3.1.5. DATABASE: Protein structures for spNadC, spNadCΔ69A , and spNadE are deposited into Protein Data Bank under the accession codes 5HUL, 5HUO & 5HUP, and 5HUH & 5HUJ, respectively.


Assuntos
Amida Sintases/metabolismo , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Pentosiltransferases/metabolismo , Ácido Quinolínico/metabolismo , Streptococcus pyogenes/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Amida Sintases/química , Amida Sintases/genética , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Análise por Conglomerados , Biologia Computacional , Cristalografia por Raios X , Dimerização , Deleção de Genes , Nicotinamida-Nucleotídeo Adenililtransferase/química , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Pentosiltransferases/química , Pentosiltransferases/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
6.
J Biol Chem ; 291(30): 15447-59, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27231348

RESUMO

Ragweed allergens affect several million people in the United States and Canada. To date, only two ragweed allergens, Amb t 5 and Amb a 11, have their structures determined and deposited to the Protein Data Bank. Here, we present structures of methylated ragweed allergen Amb a 8, Amb a 8 in the presence of poly(l-proline), and Art v 4 (mugwort allergen). Amb a 8 and Art v 4 are panallergens belonging to the profilin family of proteins. They share significant sequence and structural similarities, which results in cross-recognition by IgE antibodies. Molecular and immunological properties of Amb a 8 and Art v 4 are compared with those of Bet v 2 (birch pollen allergen) as well as with other allergenic profilins. We purified recombinant allergens that are recognized by patient IgE and are highly cross-reactive. It was determined that the analyzed allergens are relatively unstable. Structures of Amb a 8 in complex with poly(l-proline)10 or poly(l-proline)14 are the first structures of the plant profilin in complex with proline-rich peptides. Amb a 8 binds the poly(l-proline) in a mode similar to that observed in human, mouse, and P. falciparum profilin·peptide complexes. However, only some of the residues that form the peptide binding site are conserved.


Assuntos
Antígenos de Plantas/química , Imunoglobulina E/química , Animais , Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Reações Cruzadas , Humanos , Imunoglobulina E/imunologia , Camundongos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
7.
J Agric Food Chem ; 63(41): 9150-8, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26417906

RESUMO

Nonspecific lipid transfer proteins (nsLTPs) are basic proteins, stabilized by four disulfide bonds, and are expressed throughout the plant kingdom. These proteins are also known as important allergens in fruits and tree nuts. In this study, the nsLTP from hazelnuts, Cor a 8, was purified and its crystal structure determined. The protein is stable at low pH and refolds after thermal denaturation. Molecular dynamics simulations were used to provide an insight into conformational changes of Cor a 8 upon ligand binding. When known epitope areas from Pru p 3 were compared to those of Cor a 8, differences were obvious, which may contribute to limited cross-reactivity between peach and hazelnut allergens. Differences in epitope regions may contribute to limited cross-reactivity between Cor a 8 and nsLTPs from other plant sources. The structure of Cor a 8 represents the first resolved structure of a hazelnut allergen.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Antígenos de Plantas/química , Antígenos de Plantas/imunologia , Corylus/química , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Reações Cruzadas , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia
8.
J Agric Food Chem ; 63(29): 6567-76, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26146952

RESUMO

Kiwellin (Act d 5) is an allergenic protein contained in kiwifruit pulp in high amounts. The aim of this study was to investigate the three-dimensional structure of the natural molecule from green kiwifruit and its possible function. Kiwellin was crystallized, and its structure, including post-translational modifications, was elucidated. The molecular weight and structural features, in solution, were analyzed by gel filtration and circular dichroism, respectively. Although structurally similar to expansin, kiwellin lacks expansin activity and carbohydrate binding. A specific algorithm was applied to investigate any possible IgE reactivity correlation between kiwellin and a panel of 102 allergens, including expansins and other carbohydrate-binding allergens. The available data suggest a strong dependence of the kiwellin structure on the environmental/experimental conditions. This dependence therefore poses challenges in detecting the correlations between structural, functional, and immunological features of this protein.


Assuntos
Antígenos de Plantas/química , Antígenos de Plantas/imunologia , Sequência de Aminoácidos , Antígenos de Plantas/fisiologia , Cromatografia em Gel , Dicroísmo Circular , Sequência Conservada , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina E/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Peso Molecular , Proteínas de Plantas , Soluções
9.
J Immunol ; 195(1): 307-16, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26026055

RESUMO

Der p 1 is a major allergen from the house dust mite, Dermatophagoides pteronyssinus, that belongs to the papain-like cysteine protease family. To investigate the antigenic determinants of Der p 1, we determined two crystal structures of Der p 1 in complex with the Fab fragments of mAbs 5H8 or 10B9. Epitopes for these two Der p 1-specific Abs are located in different, nonoverlapping parts of the Der p 1 molecule. Nevertheless, surface area and identity of the amino acid residues involved in hydrogen bonds between allergen and Ab are similar. The epitope for mAb 10B9 only showed a partial overlap with the previously reported epitope for mAb 4C1, a cross-reactive mAb that binds Der p 1 and its homolog Der f 1 from Dermatophagoides farinae. Upon binding to Der p 1, the Fab fragment of mAb 10B9 was found to form a very rare α helix in its third CDR of the H chain. To provide an overview of the surface properties of the interfaces formed by the complexes of Der p 1-10B9 and Der p 1-5H8, along with the complexes of 4C1 with Der p 1 and Der f 1, a broad analysis of the surfaces and hydrogen bonds of all complexes of Fab-protein or Fab-peptide was performed. This work provides detailed insight into the cross-reactive and specific allergen-Ab interactions in group 1 mite allergens. The surface data of Fab-protein and Fab-peptide interfaces can be used in the design of conformational epitopes with reduced Ab binding for immunotherapy.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Antígenos de Dermatophagoides/química , Proteínas de Artrópodes/química , Cisteína Endopeptidases/química , Fragmentos Fab das Imunoglobulinas/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/imunologia , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/isolamento & purificação , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/isolamento & purificação , Sítios de Ligação , Cristalografia por Raios X , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/isolamento & purificação , Epitopos/química , Epitopos/imunologia , Ligação de Hidrogênio , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/imunologia , Ligação Proteica , Estrutura Secundária de Proteína , Pyroglyphidae/química , Pyroglyphidae/imunologia , Alinhamento de Sequência
10.
Mol Immunol ; 60(1): 86-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24769496

RESUMO

Bla g 4 is a male cockroach specific protein and is one of the major allergens produced by Blattella germanica (German cockroach). This protein belongs to the lipocalin family that comprises a set of proteins that characteristically bind small hydrophobic molecules and play a role in a number of processes such as: retinoid and pheromone transport, prostaglandin synthesis and mammalian immune response. Using NMR and isothermal titration calorimetry we demonstrated that Bla g 4 binds tyramine and octopamine in solution. In addition, crystal structure analysis of the complex revealed details of tyramine binding. As tyramine and octopamine play important roles in invertebrates, and are counterparts to vertebrate adrenergic transmitters, we speculate that these molecules are physiological ligands for Bla g 4. The nature of binding these ligands to Bla g 4 sheds light on the possible biological function of the protein. In addition, we performed a large-scale analysis of Bla g 4 and Per a 4 (an allergen from American cockroach) homologs to get insights into the function of these proteins. This analysis together with a structural comparison of Blag 4 and Per a 4 suggests that these proteins may play different roles and most likely bind different ligands. Accession numbers: The atomic coordinates and the structure factors have been deposited to the Protein Data Band under accession codes: 4N7C for native Bla g 4 and 4N7D for the Se-Met Bla g 4 structure.


Assuntos
Alérgenos/imunologia , Baratas/imunologia , Proteínas de Insetos/imunologia , Octopamina/imunologia , Tiramina/imunologia , Alérgenos/química , Alérgenos/ultraestrutura , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X , Hipersensibilidade/imunologia , Proteínas de Insetos/química , Proteínas de Insetos/ultraestrutura , Masculino , Modelos Moleculares , Ligação Proteica , Análise de Sequência de Proteína
11.
J Struct Funct Genomics ; 15(1): 13-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24452510

RESUMO

The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.


Assuntos
Ácidos Carboxílicos/química , Substâncias Macromoleculares/química , Acetatos/química , Citratos/química , Cristalização , Cristalografia por Raios X , Formiatos/química , Concentração de Íons de Hidrogênio , Proteínas/química , Sais/química
12.
J Biol Chem ; 288(52): 36890-901, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24253038

RESUMO

The incidence of peanut allergy continues to rise in the United States and Europe. Whereas exposure to the major allergens Ara h 1, 2, 3, and 6 can cause fatal anaphylaxis, exposure to the minor allergens usually does not. Ara h 8 is a minor allergen. Importantly, it is the minor food allergens that are thought to be responsible for oral allergy syndrome (OAS), in which sensitization to airborne allergens causes a Type 2 allergic reaction to ingested foods. Furthermore, it is believed that similar protein structure rather than a similar linear sequence is the cause of OAS. Bet v 1 from birch pollen is a common sensitizing agent, and OAS results when patients consume certain fruits, vegetables, tree nuts, and peanuts. Here, we report the three-dimensional structure of Ara h 8, a Bet v 1 homolog. The overall fold is very similar to that of Bet v 1, Api g 1 (celery), Gly m 4 (soy), and Pru av 1 (cherry). Ara h 8 binds the isoflavones quercetin and apigenin as well as resveratrol avidly.


Assuntos
Alérgenos/química , Antígenos de Plantas/química , Arachis , Proteínas de Plantas/química , Alérgenos/genética , Alérgenos/imunologia , Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Apium/química , Apium/genética , Apium/imunologia , Betula/química , Betula/genética , Betula/imunologia , Hipersensibilidade Alimentar/genética , Hipersensibilidade Alimentar/imunologia , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Ligação Proteica , Estrutura Terciária de Proteína , Quercetina/química , Glycine max/química , Glycine max/genética , Glycine max/imunologia , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...