Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 16261, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004836

RESUMO

There is a large unmet need for a prophylactic hepatitis C virus (HCV) vaccine to control the ongoing epidemic with this deadly pathogen. Many antiviral vaccines employ whole viruses as antigens. For HCV, this approach became feasible following the development of infectious cell culture systems for virus production. However, the lack of efficient downstream processes (DSP) for HCV purification poses a roadblock for the development of a whole virus vaccine. Using cell culture-derived genotype 1a HCV we developed a scalable and efficient DSP train, employing commonly used clarification and ultrafiltration techniques, followed by two membrane-based chromatography steps. For virus capture, steric exclusion chromatography using cellulose membranes was established, resulting in a virtually complete virus recovery with > 99% protein and 84% DNA depletion. Virus polishing was achieved by sulphated cellulose membrane adsorbers with ~ 50% virus recovery and > 99% protein and 90% DNA depletion. Additional nuclease digestion resulted in 99% overall DNA depletion with final DNA concentrations of 2 ng/mL. Process results were comparable for cell culture-derived HCV of another major genotype (5a). This study provides proof-of-concept for establishment of an efficient and economically attractive DSP with potential application for production of an inactivated whole virus vaccine against HCV for human use.


Assuntos
Hepacivirus/imunologia , Vacinas contra Hepatite Viral/imunologia , Cromatografia em Gel , Hepacivirus/genética , Humanos , Ultrafiltração , Vacinas de Produtos Inativados , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/isolamento & purificação
2.
Sci Rep ; 8(1): 17505, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504788

RESUMO

Chronic hepatitis C virus (HCV) infection poses a serious global public health burden. Despite the recent development of effective treatments there is a large unmet need for a prophylactic vaccine. Further, antiviral resistance might compromise treatment efficiency in the future. HCV cell culture systems are typically based on Huh7 and derived hepatoma cell lines cultured in monolayers. However, efficient high cell density culture systems for high-yield HCV production and studies of antivirals are lacking. We established a system based on Huh7.5 cells cultured in a hollow fiber bioreactor in the presence or absence of bovine serum. Using an adapted chimeric genotype 5a virus, we achieved peak HCV infectivity and RNA titers of 7.6 log10 FFU/mL and 10.4 log10 IU/mL, respectively. Bioreactor derived HCV showed high genetic stability, as well as buoyant density, sensitivity to neutralizing antibodies AR3A and AR4A, and dependency on HCV co-receptors CD81 and SR-BI comparable to that of HCV produced in monolayer cell cultures. Using the bioreactor platform, treatment with the NS5A inhibitor daclatasvir resulted in HCV escape mediated by the NS5A resistance substitution Y93H. In conclusion, we established an efficient high cell density HCV culture system with implications for studies of antivirals and vaccine development.


Assuntos
Antivirais/farmacologia , Reatores Biológicos , Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Hepatite C/virologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Descoberta de Drogas/métodos , Farmacorresistência Viral/efeitos dos fármacos , Genótipo , Hepacivirus/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite/imunologia , Anticorpos Anti-Hepatite/farmacologia , Hepatite C/tratamento farmacológico , Hepatite C/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA