Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Urol Open Sci ; 29: 19-29, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34337530

RESUMO

BACKGROUND: Pelvic nodal metastasis in prostate cancer impacts patient outcome negatively. OBJECTIVE: To explore tumor-infiltrating immune cells as a potential predictive tool for regional lymph node (LN) metastasis. DESIGN SETTING AND PARTICIPANTS: We applied multiplex immunofluorescence and targeted transcriptomic analysis on 94 radical prostatectomy specimens in patients with (LN+) or without (LN-) pelvic nodal metastases. Both intraepithelial and stromal infiltrations of immune cells and differentially expressed genes (mRNA and protein levels) were correlated with the nodal status. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The identified CD4 effector cell signature of nodal metastasis was validated in a comparable independent patient cohort of 184 informative cases. Patient outcome analysis and decision curve analysis were performed with the CD4 effector cell density-based signature. RESULTS AND LIMITATIONS: In the discovery cohort, both tumor epithelium and stroma from patients with nodal metastasis had significantly lower infiltration of multiple immune cell types, with stromal CD4 effector cells highlighted as the top candidate marker. Targeted gene expression analysis and confirmatory protein analysis revealed key alteration of extracellular matrix components in tumors with nodal metastasis. Of note, stromal CD4 immune cell density was a significant independent predictor of LN metastasis (odds ratio [OR] = 0.15, p = 0.004), and was further validated as a significant predictor of nodal metastasis in the validation cohort (OR = 0.26, p < 0.001). CONCLUSIONS: Decreased T-cell infiltrates in the primary tumor (particularly CD4 effector cells) are associated with a higher risk of LN metastasis. Future evaluation of CD4-based assays on prostate cancer diagnostic biopsy materials may improve selection of at-risk patients for the treatment of LN metastasis. PATIENT SUMMARY: In this report, we found that cancer showing evidence of cancer metastasis to the lymph nodes tends to have less immune cells present within the tumor. We conclude that the extent of immune cells present within a prostate tumor can help doctors determine the most appropriate treatment plan for individual patients.

2.
Nat Commun ; 12(1): 4920, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389715

RESUMO

Malignant mesothelioma (MpM) is an aggressive, invariably fatal tumour that is causally linked with asbestos exposure. The disease primarily results from loss of tumour suppressor gene function and there are no 'druggable' driver oncogenes associated with MpM. To identify opportunities for management of this disease we have carried out polysome profiling to define the MpM translatome. We show that in MpM there is a selective increase in the translation of mRNAs encoding proteins required for ribosome assembly and mitochondrial biogenesis. This results in an enhanced rate of mRNA translation, abnormal mitochondrial morphology and oxygen consumption, and a reprogramming of metabolic outputs. These alterations delimit the cellular capacity for protein biosynthesis, accelerate growth and drive disease progression. Importantly, we show that inhibition of mRNA translation, particularly through combined pharmacological targeting of mTORC1 and 2, reverses these changes and inhibits malignant cell growth in vitro and in ex-vivo tumour tissue from patients with end-stage disease. Critically, we show that these pharmacological interventions prolong survival in animal models of asbestos-induced mesothelioma, providing the basis for a targeted, viable therapeutic option for patients with this incurable disease.


Assuntos
Mesotelioma Maligno/genética , Oncogenes/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Animais , Amianto , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mesotelioma Maligno/induzido quimicamente , Mesotelioma Maligno/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Naftiridinas/farmacologia , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Células Tumorais Cultivadas
3.
Nat Commun ; 12(1): 4651, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330898

RESUMO

The integrated stress response (ISR) is an essential stress-support pathway increasingly recognized as a determinant of tumorigenesis. Here we demonstrate that ISR is pivotal in lung adenocarcinoma (LUAD) development, the most common histological type of lung cancer and a leading cause of cancer death worldwide. Increased phosphorylation of the translation initiation factor eIF2 (p-eIF2α), the focal point of ISR, is related to invasiveness, increased growth, and poor outcome in 928 LUAD patients. Dissection of ISR mechanisms in KRAS-driven lung tumorigenesis in mice demonstrated that p-eIF2α causes the translational repression of dual specificity phosphatase 6 (DUSP6), resulting in increased phosphorylation of the extracellular signal-regulated kinase (p-ERK). Treatments with ISR inhibitors, including a memory-enhancing drug with limited toxicity, provides a suitable therapeutic option for KRAS-driven lung cancer insofar as they substantially reduce tumor growth and prolong mouse survival. Our data provide a rationale for the implementation of ISR-based regimens in LUAD treatment.


Assuntos
Adenocarcinoma/metabolismo , Fosfatase 6 de Especificidade Dupla/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Humanos , Indóis/farmacologia , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Estresse Fisiológico/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Cell Death Dis ; 12(2): 207, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627632

RESUMO

TP53 is the most frequently mutated gene in cancers. Mutations lead to loss of p53 expression or expression of a mutant protein. Mutant p53 proteins commonly lose wild-type function, but can also acquire novel functions in promoting metastasis and chemoresistance. Previously, we uncovered a role for Rab-coupling protein (RCP) in mutant p53-dependent invasion. RCP promotes endosomal recycling and signalling of integrins and receptor tyrosine kinases. In a screen to identify novel RCP-interacting proteins, we discovered P-glycoprotein (P-gp). Thus, we hypothesised that mutant p53 could promote chemoresistance through RCP-dependent recycling of P-gp. The interaction between RCP and P-gp was verified endogenously and loss of RCP or mutant p53 rendered cells more sensitive to cisplatin and etoposide. In mutant p53 cells we detected an RCP-dependent delivery of P-gp to the plasma membrane upon drug treatment and decreased retention of P-gp substrates. A co-localisation of P-gp and RCP was seen in mutant p53 cells, but not in p53-null cells upon chemotherapeutic exposure. In conclusion, mutant p53 expression enhanced co-localisation of P-gp and RCP to allow for rapid delivery of P-gp to the plasma membrane and increased resistance to chemotherapeutics.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Proteínas de Membrana/metabolismo , Mutação , Neoplasias/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antineoplásicos/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patologia , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Células HCT116 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Discov ; 11(5): 1228-1247, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33328217

RESUMO

KRAS-mutant colorectal cancers are resistant to therapeutics, presenting a significant problem for ∼40% of cases. Rapalogs, which inhibit mTORC1 and thus protein synthesis, are significantly less potent in KRAS-mutant colorectal cancer. Using Kras-mutant mouse models and mouse- and patient-derived organoids, we demonstrate that KRAS with G12D mutation fundamentally rewires translation to increase both bulk and mRNA-specific translation initiation. This occurs via the MNK/eIF4E pathway culminating in sustained expression of c-MYC. By genetic and small-molecule targeting of this pathway, we acutely sensitize KRASG12D models to rapamycin via suppression of c-MYC. We show that 45% of colorectal cancers have high signaling through mTORC1 and the MNKs, with this signature correlating with a 3.5-year shorter cancer-specific survival in a subset of patients. This work provides a c-MYC-dependent cotargeting strategy with remarkable potency in multiple Kras-mutant mouse models and metastatic human organoids and identifies a patient population that may benefit from its clinical application. SIGNIFICANCE: KRAS mutation and elevated c-MYC are widespread in many tumors but remain predominantly untargetable. We find that mutant KRAS modulates translation, culminating in increased expression of c-MYC. We describe an effective strategy targeting mTORC1 and MNK in KRAS-mutant mouse and human models, pathways that are also commonly co-upregulated in colorectal cancer.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Neoplasias Colorretais/genética , Fator de Iniciação 4E em Eucariotos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Inibidores de MTOR/farmacologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Animais , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
6.
Methods Mol Biol ; 2148: 245-256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32394387

RESUMO

In situ hybridization (ISH) and immunohistochemistry (IHC) are valuable tools for molecular pathology and cancer research. Recent advances in multiplex technology, assay automation, and digital image analysis have enabled the development of co-ISH IHC or immunofluorescence (IF) methods, which allow researchers to simultaneously view and quantify expression of mRNA and protein within the preserved tissue spatial context. These data are vital to the study of the control of gene expression in the complex tumor microenvironment.


Assuntos
Biomarcadores Tumorais/isolamento & purificação , Imunofluorescência/métodos , Hibridização In Situ/métodos , Neoplasias/diagnóstico , Automação , Biomarcadores Tumorais/genética , Humanos , Imuno-Histoquímica/métodos , Neoplasias/genética , Inclusão em Parafina , Microambiente Tumoral/genética
7.
Nat Med ; 26(7): 1054-1062, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32461698

RESUMO

Remarkable progress in molecular analyses has improved our understanding of the evolution of cancer cells toward immune escape1-5. However, the spatial configurations of immune and stromal cells, which may shed light on the evolution of immune escape across tumor geographical locations, remain unaddressed. We integrated multiregion exome and RNA-sequencing (RNA-seq) data with spatial histology mapped by deep learning in 100 patients with non-small cell lung cancer from the TRACERx cohort6. Cancer subclones derived from immune cold regions were more closely related in mutation space, diversifying more recently than subclones from immune hot regions. In TRACERx and in an independent multisample cohort of 970 patients with lung adenocarcinoma, tumors with more than one immune cold region had a higher risk of relapse, independently of tumor size, stage and number of samples per patient. In lung adenocarcinoma, but not lung squamous cell carcinoma, geometrical irregularity and complexity of the cancer-stromal cell interface significantly increased in tumor regions without disruption of antigen presentation. Decreased lymphocyte accumulation in adjacent stroma was observed in tumors with low clonal neoantigen burden. Collectively, immune geospatial variability elucidates tumor ecological constraints that may shape the emergence of immune-evading subclones and aggressive clinical phenotypes.


Assuntos
Adenocarcinoma de Pulmão/genética , Antígenos de Neoplasias/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Recidiva Local de Neoplasia/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Aprendizado Profundo , Exoma/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , RNA-Seq , Recidiva , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Sequenciamento do Exoma
8.
JNCI Cancer Spectr ; 4(2): pkz101, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32190817

RESUMO

BACKGROUND: Statins have anticancer properties by acting as competitive inhibitors of the mevalonate pathway. They also have anti-inflammatory activity, but their role in suppressing inflammation in a cancer context has not been investigated to date. METHODS: We have analyzed the relationship between statin use and tumor-associated macrophages (TAMs) in a cohort of 262 surgically resected primary human lung adenocarcinomas. TAMs were evaluated by multiplex immunostaining for the CD68 pan-TAM marker and the CD163 protumorigenic TAM marker followed by digital slide scanning and partially automated quantitation. Links between statin use and tumor stage, virulence, and cancer-specific survival were also investigated in a wider cohort of 958 lung adenocarcinoma cases. All statistical tests were two-sided. RESULTS: We found a statin dose-dependent reduction in protumorigenic TAMs (CD68+CD163+) in both stromal (P = .021) and parenchymal (P = .003) compartments within regions of in situ tumor growth, but this association was lost in invasive regions. No statistically significant relationship between statin use and tumor stage was observed, but there was a statin dose-dependent shift towards lower histological grade as assessed by growth pattern (P = .028). However, statin use was a predictor of slightly worse cancer-specific survival (P = .032), even after accounting for prognostic variables in a multivariable Cox proportional hazards survival model (hazard ratio = 1.38, 95% confidence interval = 1.04 to 1.84). CONCLUSIONS: Statin use is associated with reduced numbers of protumorigenic TAMs within preinvasive lung adenocarcinoma and is related to reduced tumor invasiveness, suggesting a chemo-preventive effect in early tumor development. However, invasive disease is resistant to these effects, and no beneficial relationship between statin use and patient outcome is observed.

9.
Mod Pathol ; 32(8): 1095-1105, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30932019

RESUMO

The switch from in situ to invasive tumor growth represents a crucial stage in the evolution of lung adenocarcinoma. However, the biological understanding of this shift is limited, and 'Noguchi Type C' tumors, being early lung adenocarcinomas with mixed in situ and invasive growth, represent those that are highly valuable in advancing our understanding of this process. All Noguchi Type C adenocarcinomas (n = 110) from the LATTICE-A cohort were reviewed and two patterns of in situ tumor growth were identified: those deemed likely to represent a true shift from precursor in situ to invasive disease ('Noguchi C1') and those in which the lepidic component appeared to represent outgrowth of the invasive tumor along existing airspaces ('Noguchi C2'). Overall Ki67 fraction was greater in C2 tumors and only C1 tumors showed significant increasing Ki67 from in situ to invasive disease. P53 positivity was acquired from in situ to invasive disease in C1 tumors but both components were positive in C2 tumors. Likewise, vimentin expression was increased from in situ to invasive tumor in C1 tumors only. Targeted next generation sequencing of 18 C1 tumors identified four mutations private to the invasive regions, including two in TP53, while 6 C2 tumors showed no private mutations. In the full LATTICe-A cohort, Ki67 fraction classified as either less than or greater than 10% within the in situ component of lung adenocarcinoma was identified as a strong predictor of patient outcome. This supports the proposition that tumors of all stages that have 'high grade' in situ components represent those with aggressive lepidic growth of the invasive clone. Overall these data support that the combined growth of Noguchi C tumors can represent two differing biological states and that 'Noguchi C1' tumors represent the genuine biological shift from in situ to invasive disease.


Assuntos
Adenocarcinoma de Pulmão/patologia , Carcinoma in Situ/patologia , Proliferação de Células , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/química , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma in Situ/química , Carcinoma in Situ/genética , Carcinoma in Situ/cirurgia , Feminino , Humanos , Antígeno Ki-67/análise , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Estudos Retrospectivos , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/genética , Vimentina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...