Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 56(66): 9509-9512, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32686801

RESUMO

The selective hydrodeoxygenation of hydroxyacetophenone derivatives is achieved opening a versatile pathway for the production of valuable substituted ethylphenols from readily available substrates. Bimetallic iron ruthenium nanoparticles immobilized on an imidazolium-based supported ionic liquid phase (Fe25Ru75@SILP) show high activity and stability for a broad range of substrates without acidic co-catalysts.

2.
Angew Chem Int Ed Engl ; 57(39): 12721-12726, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30176102

RESUMO

Bimetallic iron-ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL-SO3 H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH2 units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff-Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL-SO3 H materials opens a general approach to multifunctional catalytic systems (MM'@SILP+IL-func).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA