Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 20(1): 257-271, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246770

RESUMO

The main components of the essential cellular process of eukaryotic ribosome biogenesis are highly conserved from yeast to humans. Among these, the U3 Associated Proteins (UTPs) are a small subunit processome subcomplex that coordinate the first two steps of ribosome biogenesis in transcription and pre-18S processing. While we have identified the human counterparts of most of the yeast Utps, the homologs of yeast Utp9 and Bud21 (Utp16) have remained elusive. In this study, we find that NOL7 is the likely ortholog of Bud21. Previously described as a tumour suppressor through regulation of antiangiogenic transcripts, we now show that NOL7 is required for early pre-rRNA accumulation and pre-18S rRNA processing in human cells. These roles lead to decreased protein synthesis and induction of the nucleolar stress response upon NOL7 depletion. Beyond Bud21's nonessential role in yeast, we establish human NOL7 as an essential UTP that is necessary to maintain both early pre-rRNA levels and processing.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
RNA ; 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323459

RESUMO

In eukaryotes, the nucleolus is the site of ribosome biosynthesis, an essential process in all cells. While human ribosome assembly is largely evolutionarily conserved, many of the regulatory details underlying its control and function have not yet been well-defined. The nucleolar protein RSL24D1 was originally identified as a factor important for 60S ribosomal subunit biogenesis. In addition, the PeBoW (BOP1-PES1-WDR12) complex has been well-defined as required for pre-28S rRNA processing and cell proliferation. In this study, we show that RSL24D1 depletion impairs both pre-ribosomal RNA (pre-rRNA) transcription and mature 28S rRNA production, leading to decreased protein synthesis and p53 stabilization in human cells. Surprisingly, each of the PeBoW complex members is also required for pre-rRNA transcription. We demonstrate that RSL24D1 and WDR12 co-immunoprecipitate with the RNA polymerase I subunit, RPA194, and regulate its steady state levels. These results uncover the dual role of RSL24D1 and the PeBoW complex in multiple steps of ribosome biogenesis, and provide evidence implicating large ribosomal subunit biogenesis factors in pre-rRNA transcription control.

3.
Mol Biol Cell ; 32(9): 956-973, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33689394

RESUMO

Nucleoli are dynamic nuclear condensates in eukaryotic cells that originate through ribosome biogenesis at loci that harbor the ribosomal DNA. These loci are known as nucleolar organizer regions (NORs), and there are 10 in a human diploid genome. While there are 10 NORs, however, the number of nucleoli observed in cells is variable. Furthermore, changes in number are associated with disease, with increased numbers and size common in aggressive cancers. In the near-diploid human breast epithelial cell line, MCF10A, the most frequently observed number of nucleoli is two to three per cell. Here, to identify novel regulators of ribosome biogenesis we used high-throughput quantitative imaging of MCF10A cells to identify proteins that, when depleted, increase the percentage of nuclei with ≥5 nucleoli. Unexpectedly, this unique screening approach led to identification of proteins associated with the cell cycle. Functional analysis on a subset of hits further revealed not only proteins required for progression through the S and G2/M phase, but also proteins required explicitly for the regulation of RNA polymerase I transcription and protein synthesis. Thus, results from this screen for increased nucleolar number highlight the significance of the nucleolus in human cell cycle regulation, linking RNA polymerase I transcription to cell cycle progression.


Assuntos
Ciclo Celular/fisiologia , Nucléolo Celular/metabolismo , RNA Polimerase I/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/fisiologia , Núcleo Celular/metabolismo , DNA Ribossômico/genética , Humanos , Microscopia de Fluorescência/métodos , Região Organizadora do Nucléolo/metabolismo , Região Organizadora do Nucléolo/fisiologia , Biossíntese de Proteínas , Proteínas/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/fisiologia
4.
Trends Genet ; 35(10): 754-767, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31376929

RESUMO

Ribosomopathies are a diverse subset of diseases caused by reduced expression of, or mutations in, factors necessary for making ribosomes, the protein translation machinery in the cell. Despite the ubiquitous need for ribosomes in all cell types, ribosomopathies manifest with tissue-specific defects and sometimes increased cancer susceptibility, but few treatments target the underlying cause. By highlighting new research in the field, we review current hypotheses for the basis of this tissue specificity. Based on new work, we broaden our understanding of the role of ribosome biogenesis in diverse tissue types throughout embryonic development. We also pose the question of whether previously described human conditions such as aging can be at least partially attributed to defects in making ribosomes.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , RNA Ribossômico , Animais , Humanos , Família Multigênica , Precursores de RNA , Processamento Pós-Transcricional do RNA , Transcrição Gênica
5.
Eur J Pharmacol ; 854: 1-8, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30951717

RESUMO

Cannabinoid CB1 and CB2 receptors are activated by Δ9-tetrahydrocannabinol, a psychoactive component of marijuana. The cannabinoid CB1 receptor is primarily located in the brain and is responsible for the psychoactive side effects, whereas the cannabinoid CB2 receptor is located in immune cells and is an attractive target for immune-related maladies. We identify small molecules that selectively bind to the cannabinoid CB2 receptor and can be further developed into therapeutics. The affinity of three molecules, ABK5, ABK6, and ABK7, to the cannabinoid CB2 receptor was determined with radioligand competition binding. The potency of G-protein coupling was determined with GTPγS binding. The three compounds bound selectively to the cannabinoid CB2 receptor, and no binding to the cannabinoid CB1 receptor was detected up to 10 µM. Immunoblotting studies show that the amount of ERK1/2 and MEK phosphorylation increased in a Gi/o-dependent manner. Furthermore, an immune cell line (Jurkat cells) was treated with ABK5, and as a result, inhibited cell proliferation. These three compounds are novel cannabinoid CB2 receptor agonists and hold promise to be further developed to treat inflammation and the often-associated pain.


Assuntos
Receptor CB2 de Canabinoide/agonistas , Ligação Competitiva , Avaliação Pré-Clínica de Medicamentos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Células Jurkat , Ligantes , Receptor CB2 de Canabinoide/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(7): 2561-2570, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692263

RESUMO

Fanconi anemia (FA) is a disease of DNA repair characterized by bone marrow failure and a reduced ability to remove DNA interstrand cross-links. Here, we provide evidence that the FA protein FANCI also functions in ribosome biogenesis, the process of making ribosomes that initiates in the nucleolus. We show that FANCI localizes to the nucleolus and is functionally and physically tied to the transcription of pre-ribosomal RNA (pre-rRNA) and to large ribosomal subunit (LSU) pre-rRNA processing independent of FANCD2. While FANCI is known to be monoubiquitinated when activated for DNA repair, we find that it is predominantly in the deubiquitinated state in the nucleolus, requiring the nucleoplasmic deubiquitinase (DUB) USP1 and the nucleolar DUB USP36. Our model suggests a possible dual pathophysiology for FA that includes defects in DNA repair and in ribosome biogenesis.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/fisiologia , Ribossomos/metabolismo , Western Blotting , Nucléolo Celular/metabolismo , Reparo do DNA/fisiologia , Eletroforese em Gel de Poliacrilamida , Anemia de Fanconi/fisiopatologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutação , Biossíntese de Proteínas , Precursores de RNA/genética , RNA Ribossômico/genética , Transcrição Gênica , Ubiquitinação
8.
Cell Rep ; 22(7): 1923-1934, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444442

RESUMO

Ribosome biogenesis is a highly regulated, essential cellular process. Although studies in yeast have established some of the biological principles of ribosome biogenesis, many of the intricacies of its regulation in higher eukaryotes remain unknown. To understand how ribosome biogenesis is globally integrated in human cells, we conducted a genome-wide siRNA screen for regulators of nucleolar number. We found 139 proteins whose depletion changed the number of nucleoli per nucleus from 2-3 to only 1 in human MCF10A cells. Follow-up analyses on 20 hits found many (90%) to be essential for the nucleolar functions of rDNA transcription (7), pre-ribosomal RNA (pre-rRNA) processing (16), and/or global protein synthesis (14). This genome-wide analysis exploits the relationship between nucleolar number and function to discover diverse cellular pathways that regulate the making of ribosomes and paves the way for further exploration of the links between ribosome biogenesis and human disease.


Assuntos
Nucléolo Celular/metabolismo , Biogênese de Organelas , Ribossomos/metabolismo , Linhagem Celular , Genoma Humano , Humanos , Biossíntese de Proteínas , RNA Interferente Pequeno/metabolismo , Transcrição Gênica
9.
SLAS Discov ; 23(4): 375-383, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29257918

RESUMO

The endocannabinoid system (ECS) plays a diverse role in human physiology ranging from the regulation of mood and appetite to immune modulation and the response to pain. Drug development that targets the cannabinoid receptors (CB1 and CB2) has been explored; however, success in the clinic has been limited by the psychoactive side effects associated with modulation of the neuronally expressed CB1 that are enriched in the CNS. CB2, however, are expressed in peripheral tissues, primarily in immune cells, and thus development of CB2-selective drugs holds the potential to modulate pain among other indications without eliciting anxiety and other undesirable side effects associated with CB1 activation. As part of a collaborative effort among industry and academic laboratories, we performed a high-throughput screen designed to discover selective agonists or positive allosteric modulators (PAMs) of CB2. Although no CB2 PAMs were identified, 167 CB2 agonists were discovered here, and further characterization of four select compounds revealed two with high selectivity for CB2 versus CB1. These results broaden drug discovery efforts aimed at the ECS and may lead to the development of novel therapies for immune modulation and pain management with improved side effect profiles.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Receptor CB2 de Canabinoide/agonistas , Animais , Células CHO , Cricetulus , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Dor/tratamento farmacológico , Dor/metabolismo , Receptor CB1 de Canabinoide/agonistas
10.
Acad Med ; 90(12): 1675-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26466376

RESUMO

PURPOSE: To produce a physician and scientific workforce that advances high-quality research and culturally competent care, academic medical centers (AMCs) must assess their capacity for diversity and inclusion and leverage opportunities for improvement. The Diversity Engagement Survey (DES) is presented as a diagnostic and benchmarking tool. METHOD: The 22-item DES consists of eight factors that connect engagement theory to inclusion and diversity constructs. It was piloted at 1 AMC and then administered at 13 additional U.S. AMCs in 2011-2012. Face and content validity were assessed through a review panel. Cronbach alpha was used to assess internal consistency. Confirmatory factor analysis (CFA) was used to establish construct validity. Cluster analysis was conducted to establish ability of the DES to distinguish between institutions' degrees of engagement and inclusion. Criterion validity was established using observed differences in scores for demographic groups as suggested by the literature. RESULTS: The sample included 13,694 respondents across 14 AMCs. Cronbach alphas for the engagement and inclusion factors (range: 0.68-0.85), CFA fit indices, and item correlations with latent constructs indicated an acceptable model fit and that items measured the intended concepts. Cluster analysis of DES scores distinguished institutions with higher, middle, and lower degrees of engagement and inclusion by their respondents. Consistent with the literature, black, Hispanic/Latino, female, and LGBTQ (lesbian, gay, bisexual, transgender, queer) respondents reported lower degrees of engagement than their counterparts. CONCLUSIONS: The DES is a reliable and valid instrument for assessment, evaluation, and external benchmarking of institutional engagement and inclusion.


Assuntos
Centros Médicos Acadêmicos/organização & administração , Pesquisa Biomédica/organização & administração , Competência Cultural , Diversidade Cultural , Análise por Conglomerados , Estudos Transversais , Feminino , Humanos , Masculino , Massachusetts , Padrões de Prática Médica , Psicometria
11.
BMC Genomics ; 15: 748, 2014 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-25174998

RESUMO

BACKGROUND: Nonhuman primates are commonly used in biomedical research as animal models of human disease and behavior. Compared to common rodent models, nonhuman primates are genetically, physiologically, behaviorally and neurologically more similar to humans owing to more recent shared ancestry and therefore provide the advantage of greater translational validity in preclinical studies. The cynomolgus macaque (Macaca fascicularis) is one of the most commonly used nonhuman primates in academic and industry settings, yet population genetic research has revealed significant substructure throughout the species distribution that may confound studies. Cynomolgus monkeys introduced to Mauritius specifically have previously been thought to maintain the least genetic heterogeneity of all cynomolgus monkeys, although recent work, including work from our lab, suggests macaques from Mauritius too may harbor cryptic substructure. RESULTS: To evaluate putative substructure in Mauritian cynomolgus macaques, we designed a panel of 96 single nucleotide polymorphisms based on preliminary findings from previous work to screen 246 of cynomolgus monkeys from two primary suppliers. Results from this study support substructure in Mauritian macaques and suggest a minimum of two populations and maybe three on Mauritius, with moderate admixture. CONCLUSION: These findings inform the natural history of these monkeys suggesting either a previously unrecognized physical or ecological barrier to gene flow on Mauritius and/or the breakdown of historic substructure resulting from the history of macaque introduction to the island. These findings are relevant to ongoing research using these models in part because of increased appreciation of segregating common variation with functional effects and may be used to better inform animal selection in preclinical research.


Assuntos
Genética Populacional , Macaca fascicularis/genética , Alelos , Animais , Cromossomos de Mamíferos , DNA Mitocondrial , Frequência do Gene , Maurício , Filogenia , Polimorfismo de Nucleotídeo Único , Regiões não Traduzidas
12.
Front Hum Neurosci ; 8: 283, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834046

RESUMO

Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago) and 34 non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals, and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant) compared to their small-brained sister species. Evidence of differential selection in humans to the exclusion of non-human primates was absent, however elevated dN/dS was detected in catarrhines as a whole, as well as in cetaceans, possibly as part of a more general trend. Although this may suggest that protein changes associated with schizophrenia and autism are not a cost of the higher brain function found in humans, it may also point to insufficiencies in the study of these diseases including incomplete or inaccurate gene association lists and/or a greater role of regulatory changes or copy number variation. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

13.
BMC Evol Biol ; 14(1): 36, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24580860

RESUMO

BACKGROUND: Modern flamingos (Phoenicopteridae) occupy a highly specialized ecology unique among birds and represent a potentially powerful model system for informing the mechanisms by which a lineage of birds adapts and radiates. However, despite a rich fossil record and well-studied feeding morphology, molecular investigations of the evolutionary progression among modern flamingos have been limited. Here, using three mitochondrial (mtDNA) markers, we present the first DNA sequence-based study of population genetic variation in the widely distributed Chilean Flamingo and, using two mtDNA and 10 nuclear (nDNA) markers, recover the species tree and divergence time estimates for the six extant species of flamingos. Phylogenetic analyses include likelihood and Bayesian frameworks and account for potential gene tree discordance. Analyses of divergence times are fossil calibrated at the divergence of Mirandornithes (flamingos + grebes) and the divergence of crown grebes. RESULTS: mtDNA sequences confirmed the presence of a single metapopulation represented by two minimally varying mtDNA barcodes in Chilean flamingos. Likelihood and Bayesian methods recovered identical phylogenies with flamingos falling into shallow-keeled (comprising the Greater, American and Chilean Flamingos) and deep-keeled (comprising the Lesser, Andean and James's Flamingos) sub-clades. The initial divergence among flamingos occurred at or shortly after the Mio-Pliocene boundary (6-3 Ma) followed by quick consecutive divergences throughout the Plio-Pleistocene. There is significant incongruence between the ages recovered by the mtDNA and nDNA datasets, likely due to mutational saturation occurring in the mtDNA loci. CONCLUSION: The finding of a single metapopulation in the widespread Chilean Flamingo confirms similar findings in other widespread flamingo species. The robust species phylogeny is congruent with previous classifications of flamingos based on feeding morphology. Modern phoenicopterids likely originated in the New World with each sub-clade dispersing across the Atlantic at least once. Our divergence time estimates place flamingos among the youngest families of birds, counter to the classical notion of flamingos as among the oldest based on biogeography and the fossil record. Finally, we designate 'Phoeniconaias' as a junior synonym of 'Phoenicoparrus' and redefine the latter genus as containing all flamingos more closely related to Phoenicoparrus andinus than Phoenicopterus roseus.


Assuntos
Evolução Biológica , Aves/classificação , Aves/genética , Fósseis , Filogeografia , Animais , Teorema de Bayes , Aves/anatomia & histologia , Aves/fisiologia , Núcleo Celular/genética , Evolução Molecular , Variação Genética , Tipagem de Sequências Multilocus
14.
BMC Genomics ; 14: 703, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24119066

RESUMO

BACKGROUND: G-protein coupled receptors (GPCRs) play an inordinately large role in human health. Variation in the genes that encode these receptors is associated with numerous disorders across the entire spectrum of disease. GPCRs also represent the single largest class of drug targets and associated pharmacogenetic effects are modulated, in part, by polymorphisms. Recently, non-human primate models have been developed focusing on naturally-occurring, functionally-parallel polymorphisms in candidate genes. This work aims to extend those studies broadly across the roughly 377 non-olfactory GPCRs. Initial efforts include resequencing 44 Indian-origin rhesus macaques (Macaca mulatta), 20 Chinese-origin rhesus macaques, and 32 cynomolgus macaques (M. fascicularis). RESULTS: Using the Agilent target enrichment system, capture baits were designed for GPCRs off the human and rhesus exonic sequence. Using next generation sequencing technologies, nearly 25,000 SNPs were identified in coding sequences including over 14,000 non-synonymous and more than 9,500 synonymous protein-coding SNPs. As expected, regions showing the least evolutionary constraint show greater rates of polymorphism and greater numbers of higher frequency polymorphisms. While the vast majority of these SNPs are singletons, roughly 1,750 non-synonymous and 2,900 synonymous SNPs were found in multiple individuals. CONCLUSIONS: In all three populations, polymorphism and divergence is highly concentrated in N-terminal and C-terminal domains and the third intracellular loop region of GPCRs, regions critical to ligand-binding and signaling. SNP frequencies in macaques follow a similar pattern of divergence from humans and new polymorphisms in primates have been identified that may parallel those seen in humans, helping to establish better non-human primate models of disease.


Assuntos
Macaca fascicularis/genética , Macaca mulatta/genética , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Animais , Genética Populacional , Humanos , Anotação de Sequência Molecular , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/química
15.
Subst Use Misuse ; 44(7): 915-33, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19440928

RESUMO

Hepatitis C virus (HCV) infection is a major source of morbidity and mortality among substance users and persons living with human immunodeficiency virus (HIV) infection. Treatment for chronic HCV infection involves complex decision-making. These decisions are even more complicated in persons with HIV and substance use related problems. A secondary analyses of qualitative data collected in the United States (2004-2005) with 31 HIV/HCV coinfected adults (48% women; mean age 44.7 years) revealed three themes related to substance use (substance use evolution, revolving door: going back out and reconstructing life) and two HCV treatment decision-making themes (HCV infection treatment issues: not a priority, fear, misinformation and get clean and try it). Study limitations and implications are discussed.


Assuntos
Tomada de Decisões , Infecções por HIV/psicologia , Hepatite C/psicologia , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Adulto , Feminino , Infecções por HIV/complicações , Hepatite C/complicações , Hepatite C/terapia , Humanos , Masculino , Transtornos Relacionados ao Uso de Substâncias/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...