Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Pathog ; 18(2): e1010325, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35202434

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that often infects individuals with the genetic disease cystic fibrosis, and contributes to airway blockage and loss of lung function. Natural killer (NK) cells are cytotoxic, granular lymphocytes that are part of the innate immune system. NK cell secretory granules contain the cytolytic proteins granulysin, perforin and granzymes. In addition to their cytotoxic effects on cancer and virally infected cells, NK cells have been shown to play a role in an innate defense against microbes, including bacteria. However, it is not known if NK cells kill extracellular P. aeruginosa or how bacterial killing might occur at the molecular level. Here we show that NK cells directly kill extracellular P. aeruginosa using NK effector molecules. Live cell imaging of a co-culture of YT cells, a human NK cell line, and GFP-expressing P. aeruginosa in the presence of the viability dye propidium iodide demonstrated that YT cell killing of P. aeruginosa is contact-dependent. CRISPR knockout of granulysin or perforin in YT cells had no significant effect on YT cell killing of P. aeruginosa. Pre-treatment of YT and NK cells with the serine protease inhibitor 3,4-dichloroisocoumarin (DCI) to inhibit all granzymes, resulted in an inhibition of killing. Although singular CRISPR knockout of granzyme B or H had no effect, knockout of both in YT cells completely abrogated killing of P. aeruginosa in comparison to wild type YT cell controls. Nitrocefin assays suggest that the bacterial membrane is damaged. Inhibition of killing by antioxidants suggest that ROS are required for the bactericidal mode-of-action. Taken together, these results identify that NK cells kill P. aeruginosa through a membrane damaging, contact-dependent process that requires granzyme induced ROS production, and moreover, that granzyme B and H are redundant in this killing process.


Assuntos
Glicoproteínas de Membrana , Pseudomonas aeruginosa , Granzimas/metabolismo , Humanos , Células Matadoras Naturais , Glicoproteínas de Membrana/metabolismo , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pseudomonas aeruginosa/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
mBio ; 11(6)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33234684

RESUMO

Cryptococcus gattii is a major cause of life-threatening mycosis in immunocompetent individuals and responsible for the ongoing epidemic outbreak of cryptococcosis in the Pacific Northwest of North America. This deadly fungus is known to evade important host immune responses, including dendritic cell (DC) maturation and concomitant T cell immunity, via immune evasion mechanisms that remain unclear. Here, we demonstrate that primary human DCs phagocytose C. gattii but the maturation of phagosomes to phagolysosomes was blocked as a result of sustained filamentous actin (F-actin) that entrapped and concealed the phagosomes from recognition. Superresolution structured illumination microscopy (SR-SIM) revealed that the persistent phagosomal F-actin formed a cage-like structure that sterically hindered and functionally blocked the fusion of lysosomes. Blocking lysosome fusion was sufficient to inhibit phagosomal acidification and subsequent intracellular fungal killing by DCs. Retention of phagosomal F-actin by C. gattii also caused DC immunoparalysis. Disrupting the retained F-actin cage with cytochalasin D not only restored DC phagosomal maturation but also promoted DC costimulatory maturation and robust T cell activation and proliferation. Collectively, these results reveal a unique mechanism of DC immune evasion that enhances intracellular fungal pathogenicity and may explain suppressed cell-mediated immunity.IMPORTANCECryptococcus yeast species typically display characteristics of opportunistic pathogens, with the exception of C. gattii, which can cause life-threatening respiratory and disseminated brain infections in otherwise healthy people. The pathogenesis of C. gattii is not well understood, but an important characteristic is that C. gattii is capable of evading host cell-mediated immune defenses initiated by DCs. Here, we report that when virulent C. gattii becomes ingested by a DC, the intracellular compartment containing the fungi is covered by a persistent protein cage structure consisting of F-actin. This F-actin cage acts as a barrier to prevent interaction with other intracellular compartments, and as a result, the DC fails to kill the fungi and activate important cell-mediated immune responses. We propose that this unique immune evasion mechanism permits C. gattii to remain unchallenged within host cells, leading to persistent infection.


Assuntos
Actinas/metabolismo , Cryptococcus gattii/imunologia , Cryptococcus gattii/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Fagossomos/metabolismo , Biomarcadores , Comunicação Celular/imunologia , Criptococose/imunologia , Criptococose/metabolismo , Criptococose/microbiologia , Humanos , Imunofenotipagem , Ativação Linfocitária , Linfócitos T/imunologia , Linfócitos T/metabolismo , Virulência
3.
ACG Case Rep J ; 7(2): e00323, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32440526

RESUMO

We report a case of primary esophageal tuberculosis in a 35-year-old woman without HIV who presented with a month's history of epigastric and chest pain without dysphagia or odynophagia and was found to have histologic evidence of multiple caseating granulomata on esophageal biopsy, which was confirmed positive for Mycobacterium tuberculosis complex DNA and cultures.

4.
Int Immunol ; 31(6): 385-396, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31051036

RESUMO

Burkholderia cepacia complex (Bcc), which includes B. cenocepacia and B. multivorans, pose a life-threatening risk to patients with cystic fibrosis. Eradication of Bcc is difficult due to the high level of intrinsic resistance to antibiotics, and failure of many innate immune cells to control the infection. Because of the pathogenesis of Bcc infections, we wondered if a novel mechanism of microbial host defense involving direct antibacterial activity by natural killer (NK) cells might play a role in the control of Bcc. We demonstrate that NK cells bound Burkholderia, resulting in Src family kinase activation as measured by protein tyrosine phosphorylation, granule release of effector proteins such as perforin and contact-dependent killing of the bacteria. These studies provide a means by which NK cells could play a role in host defense against Bcc infection.


Assuntos
Infecções por Burkholderia/imunologia , Burkholderia cepacia/fisiologia , Burkholderia/fisiologia , Fibrose Cística/imunologia , Células Matadoras Naturais/imunologia , Adesão Celular , Degranulação Celular , Linhagem Celular , Citotoxicidade Imunológica , Humanos , Imunidade Celular , Perforina/metabolismo , Fosforilação , Transdução de Sinais , Quinases da Família src/metabolismo
5.
J Leukoc Biol ; 105(6): 1285-1296, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30821868

RESUMO

It is now evident that NK cells kill bacteria, fungi, and parasites in addition to tumor and virus-infected cells. In addition to a number of recent publications that have identified the receptors and ligands, and mechanisms of cytotoxicity, new insights are reflected in the reports from researchers all over the world at the 17th Meeting of the Society for Natural Immunity held in San Antonio, TX, USA from May 28 through June 1, 2018. We will provide an overview of the field and discuss how the presentations at the meeting might shape our knowledge and future directions in the field.


Assuntos
Bactérias/imunologia , Fungos/imunologia , Imunidade Celular , Células Matadoras Naturais/imunologia , Vírus/imunologia , Animais , Congressos como Assunto , Humanos , Imunidade Inata , Sociedades Científicas , Texas
6.
Cell Rep ; 24(11): 3017-3032, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208325

RESUMO

Cryptococcus is the most important cause of fungal meningitis in immunocompromised individuals. Host defense against Cryptococcus involves direct killing by NK cells. That NK cells from HIV-infected patients fail to polarize perforin to the microbial synapse and kill C. neoformans led us to explore the mechanisms used to reposition and polarize the cytolytic granules to the synapse. Using live-cell imaging, we observed microtubule and granule movements in response to Cryptococcus that revealed a kinesin-dependent event. Eg5-kinesin bound to perforin-containing granules and was required for association with the microtubules. Inhibition of Eg5-kinesin abrogated dynein-dependent granule convergence to the MTOC and granule and MTOC polarization to the synapse and suppressed NK cell killing of Cryptococcus. In contrast, Eg5-kinesin was dispensable for tumor killing. This reveals an alternative mechanism of MTOC repositioning and granule polarization, not used in tumor cytotoxicity, in which Eg5-kinesin is required to initiate granule movement, leading to microbial killing.


Assuntos
Cryptococcus/imunologia , Cryptococcus/patogenicidade , Grânulos Citoplasmáticos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Cinesinas/metabolismo , Linhagem Celular , Células Cultivadas , Grânulos Citoplasmáticos/genética , Citotoxicidade Imunológica , Humanos , Cinesinas/genética
7.
J Immunol ; 201(8): 2369-2376, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30201811

RESUMO

Cryptococcus neoformans is a fungal pathogen that causes fatal meningitis and pneumonia. During host defense to Cryptococcus, NK cells directly recognize and kill C. neoformans using cytolytic degranulation analogous to killing of tumor cells. This fungal killing requires independent activation of Src family kinase (SFK) and Rac1-mediated pathways. Recognition of C. neoformans requires the natural cytotoxicity receptor, NKp30; however, it is not known whether NKp30 activates both signal transduction pathways or whether a second receptor is involved in activation of one of the pathways. We used primary human NK cells and a human NK cell line and found that NKp30 activates SFK → PI3K but not Rac1 cytotoxic signaling, which led to a search for the receptor leading to Rac1 activation. We found that NK cells require integrin-linked kinase (ILK) to activate Rac1 for effective fungal killing. This observation led to our identification of ß1 integrin as an essential anticryptococcal receptor. These findings demonstrate that multiple receptors, including ß1 integrins and NKp30 and their proximal signaling pathways, are required for recognition of Cryptococcus, which activates a central cytolytic antimicrobial pathway leading to fungal killing.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/fisiologia , Integrina beta1/metabolismo , Células Matadoras Naturais/imunologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Adolescente , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Imunidade Inata , Masculino , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
8.
Nat Commun ; 9(1): 751, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467448

RESUMO

Natural killer (NK) cells use the activating receptor NKp30 as a microbial pattern-recognition receptor to recognize, activate cytolytic pathways, and directly kill the fungi Cryptococcus neoformans and Candida albicans. However, the fungal pathogen-associated molecular pattern (PAMP) that triggers NKp30-mediated killing remains to be identified. Here we show that ß-1,3-glucan, a component of the fungal cell wall, binds to NKp30. We further demonstrate that ß-1,3-glucan stimulates granule convergence and polarization, as shown by live cell imaging. Through Src Family Kinase signaling, ß-1,3-glucan increases expression and clustering of NKp30 at the microbial and NK cell synapse to induce perforin release for fungal cytotoxicity. Rather than blocking the interaction between fungi and NK cells, soluble ß-1,3-glucan enhances fungal killing and restores defective cryptococcal killing by NK cells from HIV-positive individuals, implicating ß-1,3-glucan to be both an activating ligand and a soluble PAMP that shapes NK cell host immunity.


Assuntos
Candida albicans/imunologia , Cryptococcus neoformans/imunologia , Células Matadoras Naturais/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Linhagem Celular , Polaridade Celular/imunologia , Grânulos Citoplasmáticos/imunologia , Citotoxicidade Imunológica , Infecções por HIV/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sinapses Imunológicas/imunologia , Ligantes , Microscopia de Força Atômica , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Perforina/imunologia , Proteínas Recombinantes/imunologia , Solubilidade , beta-Glucanas/imunologia
9.
mBio ; 7(4)2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27555306

RESUMO

UNLABELLED: Cryptococcus neoformans is a pathogenic yeast and a leading cause of life-threatening meningitis in AIDS patients. Natural killer (NK) cells are important immune effector cells that directly recognize and kill C. neoformans via a perforin-dependent cytotoxic mechanism. We previously showed that NK cells from HIV-infected patients have aberrant anticryptococcal killing and that interleukin-12 (IL-12) restores the activity at least partially through restoration of NKp30. However, the mechanisms causing this defect or how IL-12 restores the function was unknown. By examining the sequential steps in NK cell killing of Cryptococcus, we found that NK cells from HIV-infected patients had defective binding of NK cells to C. neoformans Moreover, those NK cells that bound to C. neoformans failed to polarize perforin-containing granules to the microbial synapse compared to healthy controls, suggesting that binding was insufficient to restore a defect in perforin polarization. We also identified lower expression of intracellular perforin and defective perforin release from NK cells of HIV-infected patients in response to C. neoformans Importantly, treatment of NK cells from HIV-infected patients with IL-12 reversed the multiple defects in binding, granule polarization, perforin content, and perforin release and restored anticryptococcal activity. Thus, there are multiple defects in the cytolytic machinery of NK cells from HIV-infected patients, which cumulatively result in defective NK cell anticryptococcal activity, and each of these defects can be reversed with IL-12. IMPORTANCE: The mechanisms by which NK cells bind directly to pathogens and deploy their deadly cytolytic machinery during microbial host defense are only beginning to be elucidated. With the goal of understanding this process, we used NK cells from HIV-infected patients, which were known to have a defect in killing of Cryptococcus neoformans Taking advantage of previous studies that had shown that IL-12 restored killing, we used the cytokine as a gain-of-function approach to define the relevance of multiple steps in the recognition and cytolytic pathway. We demonstrated that NK cells from HIV-infected patients failed to kill Cryptococcus due to defects in perforin expression, granule polarization, and release of perforin. Additionally, IL-12 restored recognition of C. neoformans through binding of the NK-activating receptor NKp30. These observations identify important mechanisms used by NK cells to kill microbes and determine that defects in NK cells from HIV-infected patients are reversible.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/imunologia , Infecções por HIV/complicações , Interleucina-12/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/microbiologia , Adesão Celular , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Humanos , Perforina/metabolismo
10.
J Biol Chem ; 291(13): 6912-22, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26867574

RESUMO

The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found thatCryptococcus neoformansindependently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing,Cryptococcusinitiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity againstC. neoformans Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to killC. neoformans.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/imunologia , Cryptococcus neoformans/fisiologia , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Proteínas rac de Ligação ao GTP/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia , Quinases da Família src/imunologia , Linhagem Celular Tumoral , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/microbiologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Pironas/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Quinases da Família src/genética , Proteína RAC2 de Ligação ao GTP
11.
J Immunol ; 196(3): 1259-71, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26740109

RESUMO

Cryptococcus gattii is an emerging fungal pathogen on the west coast of Canada and the United States that causes a potentially fatal infection in otherwise healthy individuals. In previous investigations of the mechanisms by which C. gattii might subvert cell-mediated immunity, we found that C. gattii failed to induce dendritic cell (DC) maturation, leading to defective T cell responses. However, the virulence factor and the mechanisms of evasion of DC maturation remain unknown. The cryptococcal polysaccharide capsule is a leading candidate because of its antiphagocytic properties. Consequently, we asked if the capsule of C. gattii was involved in evasion of DC maturation. We constructed an acapsular strain of C. gattii through CAP59 gene deletion by homologous integration. Encapsulated C. gattii failed to induce human monocyte-derived DC maturation and T cell proliferation, whereas the acapsular mutant induced both processes. Surprisingly, encapsulation impaired DC maturation independent of its effect on phagocytosis. Indeed, DC maturation required extracellular receptor signaling that was dependent on TNF-α and p38 MAPK, but not ERK activation, and the cryptococcal capsule blocked this extracellular recognition. Although the capsule impaired phagocytosis that led to pH-dependent serine-, threonine-, and cysteine-sensitive protease-dependent Ag processing, it was insufficient to impair T cell responses. In summary, C. gattii affects two independent processes, leading to DC maturation and Ag processing. The polysaccharide capsule masked extracellular detection and reduced phagocytosis that was required for DC maturation and Ag processing, respectively. However, the T cell response was fully restored by inducing DC maturation.


Assuntos
Apresentação de Antígeno/imunologia , Criptococose/imunologia , Cryptococcus gattii/imunologia , Células Dendríticas/imunologia , Cápsulas Fúngicas/imunologia , Evasão da Resposta Imune/imunologia , Western Blotting , Proliferação de Células , Humanos , Ativação Linfocitária/imunologia , Linfócitos T/imunologia
12.
Front Immunol ; 7: 692, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123389

RESUMO

Natural killer (NK) cells kill or inhibit the growth of a number of fungi including Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, cause life-threatening disease in individuals with impaired cell-mediated immunity. While there are similarities to cell-mediated killing of tumor cells, there are also important differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the NKp30 receptor has been described to mediate signaling events that trigger the NK cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and Candida albicans, subsequently leading to granule exocytosis and fungal killing. More recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, and 7 and directly mediate fungal clearance. A number of unanswered questions remain. For example, is only one NK cell-activating receptor sufficient for signaling leading to fungal killing? Are the signaling pathways activated by fungi similar to those activated by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of interaction with fungi, and how does this process compare with tumor killing? Recent insights into receptor use, intracellular signaling and cytolytic granule trafficking during NK cell-mediated fungal killing will be compared to tumor killing, and the implications for therapeutic approaches will be discussed.

13.
Cell Host Microbe ; 14(4): 387-97, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24139398

RESUMO

Natural killer (NK) cells are a subset of immune effectors that directly bind and kill fungi via a perforin-dependent mechanism. The receptor mediating this activity and its potential role in disease remain unknown. Using an unbiased approach, we determined that NKp30 is responsible for recognition and killing of the fungal pathogens Cryptococcus and Candida. NKp30 was required for NK cell-fungal conjugate formation, phosphatidylinositol 3-kinase (PI3K) signaling, and perforin release. Because fungal infections are a leading cause of death in AIDS patients, we examined NKp30 expression in HIV-infected patients. NK cells from these patients had diminished NKp30 expression, defective perforin release, and blunted microbicidal activity. Surprisingly, interleukin-12 (IL-12) restored NKp30 expression and fungal killing. Thus, the NKp30 receptor plays a critical role in NK cell antifungal cytotoxicity, and diminished expression of NKp30 is responsible for defective antifungal activity of NK cells from HIV-infected patients, which can be corrected with IL-12.


Assuntos
Candida/imunologia , Cryptococcus/imunologia , Infecções por HIV/imunologia , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Células Matadoras Naturais/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/biossíntese , Células Cultivadas , Regulação para Baixo , Fungos , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Perforina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais
14.
PLoS One ; 8(6): e66825, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762498

RESUMO

Myxoma virus (MYXV) is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC) I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase) and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activity. We thus hypothesized that MYXV infection of glioma cells will promote NK cell-mediated recognition and killing of gliomas. We infected human gliomas with MYXV and evaluated their susceptibility to NK cell-mediated cytotoxicity. MYXV enhanced NK cell-mediated killing of glioma cells (U87 cells, MYXV vs. Mock: 51.73% vs. 28.63%, P = .0001, t test; U251 cells, MYXV vs. Mock: 40.4% vs. 20.03%, P .0007, t test). Using MYXV M153R targeted knockout (designated vMyx-M153KO) to infect gliomas, we demonstrate that M153R was responsible for reduced expression of MHC I on gliomas and enhanced NK cell-mediated antiglioma activity (U87 cells, MYXV vs. vMyx-M153KO: 51.73% vs. 25.17%, P = .0002, t test; U251 cells, MYXV vs. vMyx-M153KO: 40.4% vs. 19.27, P = .0013, t test). Consequently, NK cell-mediated lysis of established human glioma tumors in CB-17 SCID mice was accelerated with improved mouse survival (log-rank P = .0072). These results demonstrate the potential for combining MYXV with NK cells to effectively kill malignant gliomas.


Assuntos
Neoplasias Encefálicas/prevenção & controle , Glioma/prevenção & controle , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/imunologia , Terapia Viral Oncolítica , Infecções por Poxviridae/prevenção & controle , Infecções Tumorais por Vírus/prevenção & controle , Animais , Western Blotting , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/virologia , Feminino , Glioma/imunologia , Glioma/virologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Técnicas Imunoenzimáticas , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Camundongos , Camundongos SCID , Myxoma virus/fisiologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologia , Células Tumorais Cultivadas , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia
15.
PLoS One ; 6(11): e27390, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22087306

RESUMO

BACKGROUND: Since the isolation of Helicobacter species in biliary system, a hypothetical question was raised about the role of these agents in the development of cholelithiasis. This meta-analysis is to explore the association between the Helicobacter infection and biliary lithiasis. METHODOLOGY/PRINCIPAL FINDINGS: A systematic literature search was performed to identify all eligible articles. Meta-analysis which was carried out using odds ratio and random effect model, 95% confidence intervals for odds ratio was calculated. Quantitative assessment of heterogeneity was explored by chi-square test with significance set at P value 0.10 and was measured using I(2) statistic. Eighteen studies published between 1998 and 2011 were finally eligible for meta-analysis. H. pylori, H. bilis, H. hepaticus, H. pullorum and H. ganmani were studied. With heterogeneity (I(2) = 69.5%, P<0.0001), significantly higher pooled infection rates of H. pylori (OR: 2.59, 35.82% versus 26.75%, P = 0.01) and H. hepaticus (OR: 3.13, 31.30% versus 12.12%, P = 0.02) were observed in lithiasis group. Higher prevalence of H. pylori in cholelithiasis patients were reported by studies from East Asia, South Asia and South America. Evidences supporting the higher presence of H. pylori in cholelithiasis patients could be found by PCR for detecting 16s rRNA in bile, 26 kDa protein gene in biliary tissue and immunohistochemistry. Using multiple detection tests could increase the detection rate of H. pylori. CONCLUSIONS/SIGNIFICANCES: Our meta-analysis suggests a trend of higher presence of H. pylori in cholelithiasis patients than control group and this trend was significant in the regions with higher prevalence of this agent. Evidences supporting the association between Helicobacter and cholelithiasis could be found by using different tests but the gold standard for the identification of these bacteria in biliary system has yet to be established. Considering obvious heterogeneity, a large multi-center study will facilitate us to further clarify the association between the Helicobacter infection and cholelithiasis.


Assuntos
Sistema Biliar/microbiologia , Colelitíase/microbiologia , Infecções por Helicobacter/complicações , Helicobacter/isolamento & purificação , Sistema Biliar/patologia , Colelitíase/etiologia , Helicobacter pylori , Humanos , Litíase
16.
Trends Mol Med ; 17(8): 433-41, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21507717

RESUMO

Malignant gliomas (MGs) are deadly brain tumors with a median survival after resection, radiotherapy and chemotherapy of only 12 months. The natural immunosuppressive state of MG patients and the locally restricted growth of MGs render this neoplasm an excellent target for immunotherapy. Consequently, several failed attempts were made to treat MGs with immune cells. Recent preclinical experimental studies, however, demonstrate that natural killer (NK) cells can kill MGs and therefore hold promise in immunotherapy of MGs. This review describes the experimental and clinical evidence that support the potential of NK cells in therapy of MGs as well as the limitations to NK therapy. Finally, we propose strategies that could circumvent mitigating factors and enhance NK cell therapy for MG patients.


Assuntos
Glioma/terapia , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Regulação Neoplásica da Expressão Gênica/imunologia , Glioma/genética , Glioma/imunologia , Glioma/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Ligantes , Microambiente Tumoral/imunologia
17.
Biochem Pharmacol ; 81(2): 251-8, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20934407

RESUMO

Enzastaurin is a selective protein kinase Cß inhibitor which is shown to have direct antitumor effect as well as suppress glycogen synthase kinase-3ß (GSK-3ß) phosphorylation (resulting in its activation) in both tumor tissues and peripheral blood mononuclear cells (PBMC). It is currently used in phase II trials for the treatment of colon cancer, refractory glioblastoma and diffuse large B cell lymphoma. In this study, the direct effect of enzastaurin on effector function of human natural killer (NK) cells was investigated. The results obtained showed that enzastaurin suppressed both natural and antibody-dependent cellular cytotoxicity (ADCC) of NK cells against different tumor targets. This inhibition was associated with a specific down-regulation of surface expression of NK cell activating receptor NKG2D and CD16 involved in natural cytotoxicity and ADCC respectively, as well as the inhibition of perforin release. Analysis of signal transduction revealed that enzastaurin activated GSK-3ß by inhibition of GSK-3ß phosphorylation. Treatment of NK cells with GSK-3ß-specific inhibitor TDZD-8 prevented enzastaurin-induced inhibition of NK cell cytotoxicity. Apart from the known antitumor and antiangiogenic effects, these results demonstrate that enzastaurin suppresses NK cell activity and may therefore interfere with NK cell-mediated tumor control in enzastaurin-treated cancer patients.


Assuntos
Antineoplásicos/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Indóis/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/enzimologia , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Humanos , Células Matadoras Naturais/fisiologia , Perforina/genética , Perforina/metabolismo , Fosforilação , Tiadiazóis/farmacologia
18.
Med Microbiol Immunol ; 199(4): 291-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20386921

RESUMO

Hypercytokinaemia is thought to contribute to highly pathogenic H5N1 influenza A virus disease. Glycyrrhizin is known to exert immunomodulatory and anti-inflammatory effects and therefore a candidate drug for the control of H5N1-induced pro-inflammatory gene expression. Here, the effects of an approved parenteral glycyrrhizin preparation were investigated on H5N1 virus replication, H5N1-induced pro-inflammatory responses, and H5N1-induced apoptosis in human monocyte-derived macrophages. Glycyrrhizin 100 µg/ml, a therapeutically achievable concentration, impaired H5N1-induced production of CXCL10, interleukin 6, and CCL5 and inhibited H5N1-induced apoptosis but did not interfere with H5N1 replication. Global inhibition of immune responses may result in the loss of control of virus replication by cytotoxic immune cells including natural killer cells and cytotoxic CD8(+) T-lymphocytes. Notably, glycyrrhizin concentrations that inhibited H5N1-induced pro-inflammatory gene expression did not affect cytolytic activity of natural killer cells. Since H5N1-induced hypercytokinaemia is considered to play an important role within H5N1 pathogenesis, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.


Assuntos
Citocinas/metabolismo , Ácido Glicirrízico/farmacologia , Fatores Imunológicos/farmacologia , Virus da Influenza A Subtipo H5N1/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Apoptose , Células Cultivadas , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Humanos , Virus da Influenza A Subtipo H5N1/fisiologia , Interleucina-6/metabolismo , Macrófagos/fisiologia , Replicação Viral/efeitos dos fármacos
19.
Biochem Pharmacol ; 79(2): 188-97, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19665449

RESUMO

Ribavirin, a broad-spectrum anti-viral drug, exhibits immunomodulatory activities. To study direct effects of ribavirin on natural killer (NK) cell effector functions and signaling, resting NK cells and interleukin (IL)-15-activated NK cells were treated for 5 days with therapeutic ribavirin concentrations ranging from 5 microg/ml to 20 microg/ml. Both resting and IL-15-activated NK cells that were not treated with ribavirin were used as control. Cytotoxicity assays, flow cytometry, enzyme linked immunosorbent assays, and Western blot experiments were performed to elucidate ribavirin effect on NK cells. Results showed that ribavirin (not toxic at concentrations tested; IC(50)>80 microg/ml) had no influence on lysis of target cells by freshly isolated NK cells. Conversely, ribavirin dose-dependently inhibited lysis of target cells by up to 66% and impaired interferon gamma production when IL-15-activated NK cells were used. IL-15-induced increased expression and hence function of NK cell activating receptors including NKp30, NKp44, NKp46 and NKG2D were selectively down-regulated and impaired. These inhibitory effects were associated with the down-regulation of IL-15 receptor beta and gamma expression. Accordingly, downstream events involved in NK cell signaling via IL-15 receptors including the activation of Janus kinase (Jak)-1, signal transducer and activator of transcription STAT-1, STAT-3, and STAT-5 as well as pathways responsible for NK cell degranulation including extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) were impaired. These results reveal a novel mechanism by which ribavirin exerts its immunomodulatory activities.


Assuntos
Antivirais/farmacologia , Fatores Imunológicos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Ribavirina/farmacologia , Western Blotting , Ensaio de Imunoadsorção Enzimática , Humanos , Células K562 , Células Matadoras Naturais/imunologia , Transdução de Sinais
20.
Med Microbiol Immunol ; 199(2): 93-101, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20012989

RESUMO

Tumor resistance to lysis by resting natural killer (NK) cells may be overcome by priming of NK cells with cytokines or by binding of NK activating receptors to ligands expressed on target cells. In this study, major histocompatibility complex class I (MHC-I)-negative LNCaP and MHC-I-positive DU145 cells were infected with genetically modified influenza A virus lacking the non-structural gene 1 (NS1 IAV). The cells were used to investigate the influence of NS1 IAV infection on NK cell lysis of tumor cells as well as to prime NK cells for lysis of LNCaP and DU145 cells. While LNCaP cells infected with DeltaNS1 IAV showed enhanced lysis when compared with mock-infected cells (93% +/- 1.47 vs. 52% +/- 0.74), both mock-infected and DeltaNS1 IAV-infected DU145 cells were resistant to NK cell lysis. Moreover, NK cells primed with DeltaNS1 IAV-infected LNCaP/DU145 cells effectively lysed resistant DU145 and sensitive LNCaP cells to a greater extent than NK cells primed with mock-infected LNCaP/DU145 or non-primed NK cells. Also, NK cell priming with DeltaNS1 IAV-infected tumor cells enhanced extracellular signal-regulated kinase phosphorylation and increased granule release in NK cells. The increased granule release was specifically mediated by NKp46, which eventually potentiated NK cells primed with DeltaNS1 IAV-infected tumor cells to overcome the inhibitory effects posed by MHC-I expression on DU145 cells. These findings show that in addition to direct lytic activity of NK cells, DeltaNS1 IAV may influence anti-tumoral responses by priming NK cells.


Assuntos
Vírus da Influenza A/imunologia , Células Matadoras Naturais/imunologia , Vírus Oncolíticos/imunologia , Vacinas Anticâncer , Degranulação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Masculino , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...