Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(2): 50, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145436

RESUMO

Pollution caused by spent engine oil has become a major global ecological concern as it constitutes a big threat to plants, animals, microorganisms and the soil ecosystem. This study was undertaken to examine the remediation of spent engine oil-contaminated soil through biostimulation and bioaugmentation with sodium dodecyl sulphate and indigenous hydrocarbonoclastic bacterial isolates. Twelve mesocosms were organized into four groups designated G1, G2, G3 and G4 and each filled with 2.5 kg of soil samples. Each group was composed of three mesocosms to produce a triplicate setup. G1 contained pristine soil which served as a positive control. G2 contained a total petroleum hydrocarbon (TPH) of 913.333 mg/kg in the untreated oil-polluted soil which served as a negative control. G3 contained a TPH of 913.333 mg/kg in the polluted soil inoculated with indigenous hydrocarbonoclastic bacterial isolates. G4 contained a TPH of 913.333 mg/kg in the polluted soil mixed with bacterial consortium and sodium dodecyl sulphate. The level of pollution was 36.5% in the triplicate setup G2, G3 and G4. Fourier Transform Infrared spectroscopy was used to determine the degree of hydrocarbon degradation. The initial TPH value of 913.33 mg/kg was reduced by 84.44% (142 mg/kg) in soil inoculated with indigenous hydrocarbonoclastic bacterial isolates and by 88.28% (106.66 mg/kg) in biostimulated soil. Result of this study show that soil stimulation involving bacterial consortium and sodium dodecyl sulphate was more efficient than bioaugmentation strategy alone used in the remediation of spent engine oil-polluted soil.


Assuntos
Ecossistema , Petróleo , Poluição Ambiental , Hidrocarbonetos , Dodecilsulfato de Sódio , Solo
2.
Environ Monit Assess ; 195(10): 1252, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768404

RESUMO

The intensive industrial and agricultural activities currently on-going worldwide to feed the growing human population have led to significant increase in the amount of wastewater produced. These effluents are high in phosphorus (P), nitrogen (N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and heavy metals. These compounds can provoke imbalance in the ecosystem with grievous consequences to both the environment and humans. Adequate treatment of these wastewaters is therefore of utmost importance to humanity. This can be achieved through valorization of these waste streams, which is based on biorefinery idea and concept of reduce, reuse, and recycle for sustainable circular economy. This concept uses innovative processes to produce value-added products from waste such as wastewater. Yeast-based wastewater treatment is currently on the rise given to the many characteristics of yeast cells. Yeasts are generally fast growing, and they are robust in terms of tolerance to stress and inhibitory compounds, in addition to their ability to metabolize a diverse range of substrates and create a diverse range of metabolites. Therefore, yeast cells possess the capacity to recover and transform agro-industrial wastewater nutrients into highly valuable metabolites. In addition to remediating the wastewater, numerous value-added products such as single cell oil (SCO), single cell proteins (SCPs), biofuels, organic acid, and aromatic compounds amongst others can be produced through fermentation of wastewater by yeast cells. This work thus brings to limelight the potential roles of yeast cells in reducing, reusing, and recycling of agro-industrial wastewaters while proffering solutions to some of the factors that limit yeast-mediated wastewater valorization.


Assuntos
Saccharomyces cerevisiae , Águas Residuárias , Humanos , Agricultura , Ecossistema , Monitoramento Ambiental
3.
Curr Microbiol ; 80(4): 105, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790616

RESUMO

The application of Caenorhabditis elegans as a pathogenic model has spanned decades. Its use for pathogenic mould modeling has been attracting some attention lately, though not without some reservations. Several studies have shown C. elegans to be a reliable model for evaluating moulds' virulence factors and patterns as well as for screening the pathogenicity of mutant strains alongside their parental/wild type and revertant/complementary strains. There is a very high degree of reported similarities between the virulence patterns demonstrated in C. elegans and those of other invertebrate and vertebrate models. We have here presented several works in which this nematode model was adopted for virulence evaluation, and other comparative research in which virulence in C. elegans model were juxtaposed with other models. We have further presented possible reasons why there might have been variations of virulence in a few cases, thereby validating C. elegans to be an effective and reliable tool in the study of pathogenic moulds.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Virulência , Fatores de Virulência
4.
Biotechnol Adv ; 63: 108100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36669745

RESUMO

The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.


Assuntos
Pentoses , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Xilose , Engenharia Genética , Fermentação
5.
Arch Microbiol ; 204(9): 553, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960398

RESUMO

Energy crisis and environmental sustainability have attracted global attention to microalgal biofuels. The present study investigated the impact of organic carbon sources on growth and bio-oil accumulation by an oleaginous microalga Desmodesmus subspicatus LC172266 under mixotrophic culture condition. Glucose and glycerol supported higher growth rates and lipid productivities than sucrose, fructose, mannitol and acetate. Each of the organic carbon source tested supported significantly (P < 0.05) higher growth rates and lipid productivities than the photoautotrophic culture (without organic carbon source). The lipid productivity obtained with a mixture of optima concentrations of glucose and glycerol (5.0 gL-1 glycerol + 10.0 gL-1glucose) (0.14875 ± 0.002 g/L/day) was about 25% and 66% higher than the values obtained with only 10.0 gL-1glucose and 5.0 gL-1glycerol, respectively. When a batch culture with 5gL-1glycerol was fed with 0.5 gL-1glucose daily the cell growth and lipid productivity were lower than the values obtained in a batch culture with a mixture of glucose and glycerol. The lipid productivity obtained in a 4-L photobioreactor was 94% (0.217 gL-1 day-1), higher than the value obtained in a flask culture with 10.0 g/Lglucose (0.112 gL-1 day-1) and 46% higher than the value obtained in a flask culture with 5.0 gL-1glycerol (0.086 gL-1 day-1).


Assuntos
Carbono , Microalgas , Biocombustíveis , Biomassa , Glucose , Glicerol , Lipídeos
6.
Arch Microbiol ; 204(6): 306, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35532873

RESUMO

Crude oil degradation efficiency can be improved because of co-metabolism that exists when bacterial consortium is applied. However, because of possible vulnerability to environmental conditions and/or antagonistic interactions among members of the consortium, the degradation efficiency can be hampered. In this laboratory-based study, the biodegradation potentials of pure bacterial isolates namely Pseudomonas aeruginosa strain W15 (MW320658), Providencia vermicola strain W8 (MW320661) and Serratia marcescens strain W13 (MW320662) earlier isolated from crude oil-contaminated site and their consortium were evaluated using 3% crude oil-supplemented Bushnell Haas media. The efficiency was evaluated based on the viable cell count, biosurfactant analyses, percentage hydrocarbon degradation using gravimetric analysis and gas chromatography-mass spectrophotometry (GC-MS) analysis. There was decline in the population of W13 and predominance of W15 in the consortium as the incubation period progressed. Accelerated biodegradation of the crude oil hydrocarbons through co-metabolism was not achieved with the consortium; neither was there any improved resilience nor resistance to environmental changes of strain W13. The GC-MS analyses showed that the highest degradation was produced by W15 (48.23%) compared to W8 (46.04%), W13 (45.24%) and the Consortium (28.51%). The biodegradation of the crude oil hydrocarbons by W15, W8, W13 axenic cultures and their consortium treatments demonstrated that the bacterial constituent in a consortium can influence the synergistic effect that improves bioremediation. Future research that focuses on evaluating possible improvement in bioremediation through maintenance of diversity by continuous bioaugmentation using vulnerable but efficient degraders in a consortium is necessary to further understand the application of consortia for bioremediation improvement.


Assuntos
Petróleo , Biodegradação Ambiental , Cromatografia Gasosa , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Serratia marcescens/metabolismo
7.
Int. microbiol ; 25(2): 339-351, May. 2022. graf
Artigo em Inglês | IBECS | ID: ibc-216036

RESUMO

Application of bacterial consortium of hydrocarbon degraders to crude oil–contaminated site can enhance bioremediation. This study evaluated the population dynamics and crude oil degradation abilities of various consortia developed from bacterial strains isolated from crude oil–contaminated sites using crude oil–supplemented Bushnell Haas media. Each consortium consisted of three bacterial strains and was designated as Consortium A (Serratia marcescens strain N4, Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11), B (Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), C (Serratia marcescens strain N4, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), and D (Pseudomonas aeruginosa strain W15, Providencia vermicola strain W8, Serratia marcescens strain W13). There was progressive decline in the populations of Serratia marcescens strains in the consortia as the incubation period progressed. This may have led to reduction in their synergistic contribution and, subsequently, total degradation ability of crude oil by the consortia. The gravimetric analyses showed that Consortium D produced the highest % crude oil degradation of 29.66% compared to Consortia A, B, and C with 23.73%, 11.86%, and 19.49% respectively. Based on gas chromatography–mass spectrometry analyses, Consortium D produced the highest percentage total petroleum hydrocarbon degradation of 73.65% compared to 68.24%, 68.94%, and 69.19% produced by Consortia A, B, and C respectively. The biodegradation potential of Consortium D also demonstrates the significance of using isolates from the same isolation site in development of consortium for bioremediation.(AU)


Assuntos
Humanos , Petróleo , Serratia marcescens , Pseudomonas aeruginosa , Biodegradação Ambiental , Hidrocarbonetos , Nigéria , Microbiologia
8.
Biotechnol Appl Biochem ; 69(4): 1317-1326, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34053121

RESUMO

Effects of carbon source, nitrogen source, and alternatingly submerging the cells and exposing to gaseous oxygen on pigment production by Talaromyces purpurogenus LC128689, as well as pH, temperature, and UV stability of the pigments were investigated. Although fructose supported higher cell growth, a mixture of glucose and glycerol resulted in higher pigment production. Out of the organic and inorganic nitrogen sources investigated, peptone gave the highest cell concentration (7.2 ± 1.1 g/L) and pigment production (p ≤ 0 .05). The cells were then immobilized in loofa sponge and cultivated under alternating liquid phase-air phase (ALAP) system whereby the cells were alternatingly submerged and exposed to gaseous oxygen. After 20 days of cultivation, the concentrations of the red, orange, and yellow pigments were 30.15 AU500 nm , 15 AU460 nm , and 6.25 AU400 nm , respectively. In comparison with submerged culture in flasks, the red and orange pigments were 100% and 50% higher (p ≤ 0.05) in ALAP system. On the other hand, the yellow pigment was 100% higher in flask cultures than in ALAP. The three pigments were stable within a pH range of 2-12, retained more than 80% of their color intensity after autoclaving at (121°C and 1.0 atm) for 15 min and exposure to UV (3 uW/cm2 ) for 24 h.


Assuntos
Pigmentos Biológicos , Talaromyces , Nitrogênio , Oxigênio
9.
Int Microbiol ; 25(2): 339-351, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34806142

RESUMO

Application of bacterial consortium of hydrocarbon degraders to crude oil-contaminated site can enhance bioremediation. This study evaluated the population dynamics and crude oil degradation abilities of various consortia developed from bacterial strains isolated from crude oil-contaminated sites using crude oil-supplemented Bushnell Haas media. Each consortium consisted of three bacterial strains and was designated as Consortium A (Serratia marcescens strain N4, Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11), B (Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), C (Serratia marcescens strain N4, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), and D (Pseudomonas aeruginosa strain W15, Providencia vermicola strain W8, Serratia marcescens strain W13). There was progressive decline in the populations of Serratia marcescens strains in the consortia as the incubation period progressed. This may have led to reduction in their synergistic contribution and, subsequently, total degradation ability of crude oil by the consortia. The gravimetric analyses showed that Consortium D produced the highest % crude oil degradation of 29.66% compared to Consortia A, B, and C with 23.73%, 11.86%, and 19.49% respectively. Based on gas chromatography-mass spectrometry analyses, Consortium D produced the highest percentage total petroleum hydrocarbon degradation of 73.65% compared to 68.24%, 68.94%, and 69.19% produced by Consortia A, B, and C respectively. The biodegradation potential of Consortium D also demonstrates the significance of using isolates from the same isolation site in development of consortium for bioremediation.


Assuntos
Petróleo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Nigéria , Petróleo/metabolismo , Dinâmica Populacional , Pseudomonas , Serratia marcescens/metabolismo
10.
Front Cell Infect Microbiol ; 11: 751947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722339

RESUMO

The threat burden from pathogenic fungi is universal and increasing with alarming high mortality and morbidity rates from invasive fungal infections. Understanding the virulence factors of these fungi, screening effective antifungal agents and exploring appropriate treatment approaches in in vivo modeling organisms are vital research projects for controlling mycoses. Caenorhabditis elegans has been proven to be a valuable tool in studies of most clinically relevant dimorphic fungi, helping to identify a number of virulence factors and immune-regulators and screen effective antifungal agents without cytotoxic effects. However, little has been achieved and reported with regard to pathogenic filamentous fungi (molds) in the nematode model. In this review, we have summarized the enormous breakthrough of applying a C. elegans infection model for dimorphic fungi studies and the very few reports for filamentous fungi. We have also identified and discussed the challenges in C. elegans-mold modeling applications as well as the possible approaches to conquer these challenges from our practical knowledge in C. elegans-Aspergillus fumigatus model.


Assuntos
Caenorhabditis elegans , Micoses , Animais , Antifúngicos , Aspergillus fumigatus , Fungos , Micoses/tratamento farmacológico
11.
Antibiotics (Basel) ; 9(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207554

RESUMO

With the mortality rate of invasive aspergillosis caused by Aspergillus fumigatus reaching almost 100% among some groups of patients, and with the rapidly increasing resistance of A. fumigatus to available antifungal drugs, new antifungal agents have never been more desirable than now. Numerous bioactive compounds were isolated and characterized from marine resources. However, only a few exhibited a potent activity against A. fumigatus when compared to the multitude that did against some other pathogens. Here, we review the marine bioactive compounds that display a bioactivity against A. fumigatus. The challenges hampering the discovery of antifungal agents from this rich habitat are also critically analyzed. Further, we propose strategies that could speed up an efficient discovery and broaden the dimensions of screening in order to obtain promising in vivo antifungal agents with new modes of action.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32670897

RESUMO

Aspergillus fumigatus is the most reported causative pathogen associated with the increasing global incidences of aspergilloses, with the health of immunocompromised individuals mostly at risk. Monitoring the pathogenicity of A. fumigatus strains to identify virulence factors and evaluating the efficacy of potent active agents against this fungus in animal models are indispensable in current research effort. Caenorhabditis elegans has been successfully utilized as an infection model for bacterial and dimorphic fungal pathogens because of the advantages of being time-efficient, and less costly. However, application of this model to the filamentous fungus A. fumigatus is less investigated. In this study, we developed and optimized a stable and reliable C. elegans model for A. fumigatus infection, and demonstrated the infection process with a fluorescent strain. Virulence results of several mutant strains in our nematode model demonstrated high consistency with the already reported pathogenicity pattern in other models. Furthermore, this C. elegans-A. fumigatus infection model was optimized for evaluating the efficacy of current antifungal drugs. Interestingly, the azole drugs in nematode model prevented conidial germination to a higher extent than amphotericin B. Overall, our established C. elegans infection model for A. fumigatus has potential applications in pathogenicity evaluation, antifungal agents screening, drug efficacy evaluation as well as host-pathogen interaction studies.


Assuntos
Aspergilose , Preparações Farmacêuticas , Animais , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus , Caenorhabditis elegans , Virulência
13.
Biotechnol Biofuels ; 13: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477425

RESUMO

BACKGROUND: Although bioethanol production has been gaining worldwide attention as an alternative to fossil fuel, ethanol productivities and yields are still limited due to the susceptibility of fermentation microorganisms to various stress and inhibitory substances. There is therefore an unmet need to search for multi-stress-tolerant organisms to improve ethanol productivity and reduce production cost, particularly when lignocellulosic hydrolysates are used as the feedstock. RESULTS: Here, we have characterized a previously isolated Pichia kudriavzevii LC375240 strain which is thermotolerant to high temperatures of 37 °C and 42 °C. More excitingly, growth and ethanol productivity of this strain exhibit strong tolerance to multiple stresses such as acetic acid, furfural, formic acid, H2O2 and high concentration of ethanol at 42 °C. In addition, simple immobilization of LC375240 on corncobs resulted to a more stable and higher efficient ethanol production for successive four cycles of repeated batch fermentation at 42 °C. CONCLUSION: The feature of being thermotolerant and multi-stress-tolerant is unique to P. kudriavzevii LC375240 and makes it a good candidate for second-generation bioethanol fermentation as well as for investigating the molecular basis underlying the robust stress tolerance. Immobilization of P. kudriavzevii LC375240 on corncobs is another option for cheap and high ethanol productivity.

14.
Iran J Biotechnol ; 16(1): e1824, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30555842

RESUMO

BACKGROUND: Although advantages of immobilization of cells through entrapment in calcium alginate gel beads have already been demonstrated, nevertheless, instability of the beads and the mass transfer limitations remain as the major challenges. OBJECTIVE: The objective of the present study was to increase the stability, porosity (reduce mass transfer limitation), and cell immobilization capacity of calcium alginate gel beads. MATERIALS AND METHODS: Sodium alginate was mixed with various concentrations of the starch or sugar and gelled in 2% calcium chloride solution. During the gelling and curing, the starch or sugar leached out of the beads and created micro-pores. RESULTS: Micro-porous beads prepared with starch were more stable and had higher immobilization capacity than those prepared with sugar. After 24 hours of incubation (curing) of the micro-porous beads prepared with starch in calcium alginate, the solubilization time in citrate buffer was 93 minutes compared to 41 minutes for the control beads (without starch). The compressive strength of the micro-porous beads was also higher (5.62 Mpa) than that of the control beads (5.54 Mpa). The optimal starch concentration for cell immobilization was 0.4%. With this starch concentration, the immobilized Bacillus subtilis and Saccharomyces cerevisiae cell densities were 5.6 × 109 and 1.2 × 108 cells/beads, respectively. These values were 36.5% and 74% higher than the value obtained for the control beads. This method of immobilization resulted in more uniform cell distribution. CONCLUSION: Addition of starch to the sodium alginate solution before gelation in calcium chloride solution increased the stability of the beads, increased the immobilized cell density, and resulted in a more uniform cell distribution in the beads.

15.
Bioresour Technol ; 227: 15-23, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28012374

RESUMO

Environmental consequences of high productivity piggeries are significant and can result in negative environmental impacts, hence bioremediation techniques (in particular using macroalgae) are therefore of great interest. Here, the growth potential of several freshwater macroalgae in anaerobic digestion piggery effluent (ADPE), their nutrient removal rates and biochemical composition of the biomass were investigated under outdoor climatic conditions. A consortium of two macroalgae, Rhizoclonium sp. and Ulothrix sp. was isolated and could efficiently grow in the ADPE. Maximum ammonium removal rate (30.6±6.50mg NH4+-NL-1d-1) was achieved at ADPE concentration equivalent to 248mgNH4+-NL-1. Mean biomass productivity of 31.1±1.14g ash-free dry weight (AFDW) m-2d-1 was achieved. Total carbohydrate and protein contents ranged between 42.8-54.8 and 43.4-45.0% AFDW, respectively, while total lipid content was very low. The study indicates the potential use of this macroalgal consortium for treating ADPE as well as source of animal feed production.


Assuntos
Biodegradação Ambiental , Alga Marinha/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Criação de Animais Domésticos/métodos , Animais , Biomassa , Clorófitas/metabolismo , Alga Marinha/metabolismo , Suínos
16.
Biotechnol Lett ; 39(2): 253-259, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27812825

RESUMO

OBJECTIVE: To investigate a syntrophic interaction between Geobacter sulfurreducens and hydrogenotrophic methanogens in sludge-inoculated microbial fuel cell (MFC) systems running on glucose with an improved electron recovery at the anode. RESULTS: The presence of archaea in MFC reduces Coulombic efficiency (CE) due to their electron scavenging capability but, here, we demonstrate that a syntrophic interaction can occur between G. sulfurreducens and hydrogenotrophic methanogens via interspecies H2 transfer with improvement in CE and power density. The addition of the methanogenesis inhibitor, 2-bromoethanesulfonate (BES), resulted in the reduction in power density from 5.29 to 2 W/m3, and then gradually increased to the peak value of 5.5 W/m3 when BES addition was stopped. CONCLUSION: Reduction of H2 partial pressure by archaea is an efficient approach in improving power output in a glucose-fed MFC system using Geobacter sp. as an inoculum.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Geobacter/metabolismo , Glucose/metabolismo , Metano/metabolismo , Oxirredução
17.
Int Sch Res Notices ; 2014: 762070, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27433536

RESUMO

A method for the aerobic treatment of palm oil mill effluent (POME) was investigated in shake-flask experiments using a consortium developed from POME compost. POME was initially centrifuged at 4,000 g for 15 min and the supernatant was enriched with (NH4)2SO4 (0.5%) and yeast extract (0.25%) to boost its nitrogen content. At optimum pH (pH 4) and temperature (40°C) conditions, the chemical oxygen demand (COD) of the effluent decreased from 10,350 to 1,000 mg/L (90.3%) after 7 days. The total bacterial population determined by plate count enumeration was 2.4 × 10(6) CFU/mL, while the fungal count was 1.8 × 10(3) colonies/mL. Bacteria of the genera Pseudomonas, Flavobacterium, Micrococcus, and Bacillus were isolated, while the fungal genera included Aspergillus, Penicillium, Trichoderma, and Mucor. When the isolated species were each inoculated into separate batches of the raw effluent, both pH and COD were unchanged. However, at 75 and 50% POME dilutions, the COD dropped by 52 and 44%, respectively, while the pH increased from 4 to 7.53. POME treatment by aerobic method is sustainable and holds promising prospects for cushioning the environment from the problems associated with the use of anaerobic systems.

18.
Braz. arch. biol. technol ; 54(1): 113-116, Jan.-Feb. 2011. tab
Artigo em Inglês | LILACS | ID: lil-576766

RESUMO

In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42 percent) and was present in all the samples assayed. Mucor sp. was the least encountered (8.3 percent).The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL) and Aspergillus (6.25 -7.54 u/mL) spp. were the highest lipase producers while Mucor (5.72 u/mL) was the least.

19.
Appl Microbiol Biotechnol ; 84(2): 217-25, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19582447

RESUMO

Tocopherols are antioxidants that prevent various diseases caused by oxidative stress. Tocochromanols comprise four isoforms of tocopherols and four isoforms of tocotrienols but alpha-tocopherol is the most abundant and active isoform in human and animal tissues. Tocopherols are used as dietary supplements for human, as food preservatives, in manufacture of cosmetics, and for fortification of animal feed. Only photosynthetic cells are known to accumulate detectable concentrations of tocopherols. Tocopherols can be extracted and purified or concentrated from vegetable oils and other higher plant materials. However, the concentrations in these higher plant materials are very low and there are high proportions of the less-active homologues of tocopherols. Among the many strains of photosynthetic microorganisms known to accumulate tocopherols, Euglena gracilis is promising for commercial production of alpha-tocopherol. The growth rate and alpha-tocopherol contents are relatively high and alpha-tocopherol comprise more than 97% of all the tocopherols accumulated by Euglena gracilis. Although a lot of work has been done to increase the contents and composition of tocopherols in higher plants through genetic and metabolic engineering, work on genetic modification of microorganisms for increased tocopherol accumulation is scarce. Many cultivation systems have been investigated for efficient production of tocopherol by Euglena gracilis. However, those that involve heterotrophic metabolism are more promising. Bubble columns and flat-plate photobioreactors are more suitable for commercial production of tocopherols, than the tubular, internally illuminated, and open-air photobioreactors.


Assuntos
Antioxidantes/metabolismo , Euglena gracilis/metabolismo , Tocoferóis/metabolismo , Animais , Processos Autotróficos , Reatores Biológicos/microbiologia , Vias Biossintéticas , Plantas/metabolismo
20.
Appl Microbiol Biotechnol ; 79(3): 371-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18389233

RESUMO

Effects of organic carbon sources on cell growth and alpha-tocopherol productivity in wild and chloroplast-deficient W14ZUL strains of Euglena gracilis under photoheterotrophic culture were investigated. In both strains, the increase in cell growth was particularly high when glucose was added as the sole organic carbon source. On the other hand, alpha-tocopherol production per dry cell weight was enhanced by adding ethanol. Ethanol addition also increased the chlorophyll concentration in wild strain and mitochondria activity in W14ZUL strain. For effective alpha-tocopherol production, the effects of mixture of glucose and ethanol were investigated. The results showed that, when a mixture of glucose (6 g/l) and ethanol (4 g/l) was used, alpha-tocopherol productivity per culture broth was 3.89 x 10(-2) mg l(-1) h(-1), which was higher than the value obtained without addition of organic carbon source (0.92 x 10(-2) mg l(-1) h(-1)). In addition, under fed-batch cultivation using an internally illuminated photobioreactor, the alpha-tocopherol production per culture broth was 23.43 mg/l, giving a productivity of 16.27 x 10(-2) mg l(-1) h(-1).


Assuntos
Etanol/metabolismo , Euglena gracilis/metabolismo , Glucose/metabolismo , alfa-Tocoferol/metabolismo , Animais , Biomassa , Reatores Biológicos , Clorofila/metabolismo , Cloroplastos/metabolismo , Euglena gracilis/crescimento & desenvolvimento , Processos Heterotróficos , Mitocôndrias/metabolismo , Compostos Orgânicos/metabolismo , Processos Fototróficos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...