Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766025

RESUMO

While the terms "gene-by-gene interaction" (GxG) and "gene-by-environment interaction" (GxE) are commonplace within the field of quantitative and evolutionary genetics, "environment-by-environment interaction" (ExE) is a term used less often. However, in this study, we find that environment-by-environment interactions are common and differ for different genotypes (ExExG). To reach this conclusion, we analyzed a large dataset of roughly 1,000 mutant yeast strains with varying degrees of resistance to different antifungal drugs. Many researchers endeavor to predict combinations of drugs that are more lethal than either single drug. But we show that the effectiveness of a drug combination, relative to the effectiveness of single drugs, often varies across different drug resistant mutants. Even mutants that differ by only a single nucleotide change can have dramatically different drug x drug (ExE) interactions. Studying how ExE interactions change across genotypes (ExExG) is not only important when modeling the evolution of pathogenic microbes. High throughput screens of GxG and GxE have taught us about the basic cell biology and gene regulatory networks underlying genetic interactions. ExExG has been omitted but stands to impart similar lessons about the architecture of living systems. In this study, we call attention to ExExG, measure its prevalence, introduce a new framework that in some instances better predicts its direction and magnitude, and make the case for further study of this type of genetic interaction.

2.
J Wildl Dis ; 60(2): 362-374, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345467

RESUMO

Mass mortality events in wildlife can be indications of an emerging infectious disease. During the spring and summer of 2021, hundreds of dead passerines were reported across the eastern US. Birds exhibited a range of clinical signs including swollen conjunctiva, ocular discharge, ataxia, and nystagmus. As part of the diagnostic investigation, high-throughput metagenomic next-generation sequencing was performed across three molecular laboratories on samples from affected birds. Many potentially pathogenic microbes were detected, with bacteria forming the largest proportion; however, no singular agent was consistently identified, with many of the detected microbes also found in unaffected (control) birds and thus considered to be subclinical infections. Congruent results across laboratories have helped drive further investigation into alternative causes, including environmental contaminants and nutritional deficiencies. This work highlights the utility of metagenomic approaches in investigations of emerging diseases and provides a framework for future wildlife mortality events.


Assuntos
Doenças Transmissíveis Emergentes , Aves Canoras , Animais , Animais Selvagens , Metagenoma , Bactérias/genética , Doenças Transmissíveis Emergentes/veterinária , Metagenômica/métodos
3.
4.
Nat Commun ; 14(1): 8055, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052815

RESUMO

Interactions between mutations (epistasis) can add substantial complexity to genotype-phenotype maps, hampering our ability to predict evolution. Yet, recent studies have shown that the fitness effect of a mutation can often be predicted from the fitness of its genetic background using simple, linear relationships. This phenomenon, termed global epistasis, has been leveraged to reconstruct fitness landscapes and infer adaptive trajectories in a wide variety of contexts. However, little attention has been paid to how patterns of global epistasis may be affected by environmental variation, despite this variation frequently being a major driver of evolution. This is particularly relevant for the evolution of drug resistance, where antimicrobial drugs may change the environment faced by pathogens and shape their adaptive trajectories in ways that can be difficult to predict. By analyzing a fitness landscape of four mutations in a gene encoding an essential enzyme of P. falciparum (a parasite cause of malaria), here we show that patterns of global epistasis can be strongly modulated by the concentration of a drug in the environment. Expanding on previous theoretical results, we demonstrate that this modulation can be quantitatively explained by how specific gene-by-gene interactions are modified by drug dose. Importantly, our results highlight the need to incorporate potential environmental variation into the global epistasis framework in order to predict adaptation in dynamic environments.


Assuntos
Epistasia Genética , Aptidão Genética , Genótipo , Mutação , Resistência a Medicamentos , Evolução Molecular , Modelos Genéticos
5.
Phys Rev E ; 108(5-1): 054408, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115433

RESUMO

Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes. Few mentions of protein space consider how protein phenotypes can be described in terms of their biophysical components, nor do they rigorously interrogate how forces like epistasis-describing the nonlinear interaction between mutations and their phenotypic consequences-manifest across these components. In this study, we deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into "subspaces" corresponding to a set of kinetic and thermodynamic traits [k_{cat}, K_{M}, K_{i}, and T_{m} (melting temperature)]. We then examine how combinations of three mutations (eight alleles in total) display pleiotropy, or unique effects on individual subspace traits. We examine protein spaces across three orthologous DHFR enzymes (Escherichia coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that future applications to bioengineering should consider how interactions between amino acid substitutions manifest across different phenotypic subspaces.


Assuntos
Epistasia Genética , Escherichia coli , Escherichia coli/metabolismo , Mutação , Fenótipo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Resistência a Medicamentos
6.
iScience ; 26(10): 107875, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860776

RESUMO

A major objective of microbial ecology is to identify how the composition of microbial taxa shapes host phenotypes. However, most studies focus on pairwise interactions and ignore the potentially significant effects of higher-order microbial interactions.Here, we quantify the effects of higher-order interactions among taxa on host infection risk. We apply our approach to an in silico dataset that is built to resemble a population of insect hosts with gut-associated microbial communities at risk of infection from an intestinal parasite across a breadth of nutrient environmental contexts.We find that the effect of higher-order interactions is considerable and can change appreciably across environmental contexts. Furthermore, we show that higher-order interactions can stabilize community structure thereby reducing host susceptibility to parasite invasion.Our approach illustrates how incorporating the effects of higher-order interactions among gut microbiota across environments can be essential for understanding their effects on host phenotypes.

8.
Emerg Infect Dis ; 29(10): 2150-2154, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619593

RESUMO

In summer 2022, highly pathogenic influenza A(H5N1) virus reached the herring gull (Larus argentatus subspecies smithsonianus) breeding colony on Kent Island, New Brunswick, Canada. Real-time monitoring revealed a self-limiting outbreak with low mortality. Proactive seabird surveillance is crucial for monitoring such limited outbreaks, protecting seabirds, and tracing zoonotic transmission routes.


Assuntos
Charadriiformes , Virus da Influenza A Subtipo H5N1 , Influenza Humana , Animais , Canadá/epidemiologia , Surtos de Doenças , Influenza Humana/epidemiologia
9.
PLoS Negl Trop Dis ; 17(7): e0011461, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410780

RESUMO

V. vulnificus is one of the deadliest waterborne pathogens, yet little is known of the ecological and environmental forces that drive outbreaks. As a nationally notifiable disease, all cases of V. vulnificus diagnosed in the United States are reported to the state in which they occurred, as well as to the Centers for Disease Control (CDC) in Atlanta, Georgia. Given that the state of Florida is a 'hotspot' for V. vulnificus in the United States, we examined the prevalence and incidence of cases reported to the Florida Department of Health (2008-2020). Using a dataset comprised of 448 cases of disease caused by V. vulnificus infection, we identified meteorological variables that were associated with clinical cases and deaths. Combined with data from the National Oceanic and Atmospheric Administration (NOAA), we first utilized correlation analysis to examine the linear relationships between satellite meteorological measurements such as wind speed, air temperature, water temperature, and sea-level pressure. We then measured the correlation of those meteorological variables with coastal cases of V. vulnificus, including the outcome, survival, or death. We also constructed a series of logistic regression models to analyze the relationship between temporal and meteorological variables during months that V. vulnificus cases were reported versus months when V. vulnificus cases were not reported. We report that between 2008 and 2020, V. vulnificus cases generally increased over time, peaking in 2017. As water temperature and air temperature increased, so too did the likelihood that infection with V. vulnificus would lead to patient death. We also found that as mean wind speed and sea-level pressure decreased, the probability that a V. vulnificus case would be reported increased. In summary, we discuss the potential factors that may contribute to the observed correlations and speculate that meteorological variables may increase in their public health relevance in light of rising global temperatures.


Assuntos
Clima Tropical , Vibrioses , Tempo (Meteorologia) , Humanos , Pressão do Ar , Temperatura , Estados Unidos , Vibrioses/epidemiologia , Vibrio vulnificus , Vento , Florida
10.
Science ; 381(6654): 134, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440656
11.
bioRxiv ; 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37066177

RESUMO

Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes. Few framings of protein space consider how higher-level protein phenotypes can be described in terms of their biophysical dimensions, nor do they rigorously interrogate how forces like epistasis-describing the nonlinear interaction between mutations and their phenotypic consequences-manifest across these dimensions. In this study, we deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into "subspaces" corresponding to a set of kinetic and thermodynamic traits [(kcat, KM, Ki, and Tm (melting temperature)]. We then examine how three mutations (eight alleles in total) display pleiotropy in their interactions across these subspaces. We extend this approach to examine protein spaces across three orthologous DHFR enzymes (Escherichia coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that the process of protein evolution and engineering should consider how interactions between amino acid substitutions manifest across different phenotypic subspaces.

12.
bioRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066376

RESUMO

The term "druggability" describes the molecular properties of drugs or targets in pharmacological interventions and is commonly used in work involving drug development for clinical applications. There are no current analogues for this notion that quantify the drug-target interaction with respect to a given target variant's sensitivity across a breadth of drugs in a panel, or a given drug's range of effectiveness across alleles of a target protein. Using data from low-dimensional empirical fitness landscapes composed of 16 ß-lactamase alleles and seven ß-lactam drugs, we introduce two metrics that capture (i) the average susceptibility of an allelic variant of a drug target to any available drug in a given panel ("variant vulnerability"), and (ii) the average applicability of a drug (or mixture) across allelic variants of a drug target ("drug applicability"). Finally, we (iii) disentangle the quality and magnitude of interactions between loci in the drug target and the seven drug environments in terms of their mutation by mutation by environment (G × G × E) interactions, offering mechanistic insight into the variant variability and drug applicability metrics. Summarizing, we propose that our framework can be applied to other datasets and pathogen-drug systems to understand which pathogen variants in a clinical setting are the most concerning (low variant vulnerability), and which drugs in a panel are most likely to be effective in an infection defined by standing genetic variation in the pathogen drug target (high drug applicability).

13.
Annu Rev Virol ; 10(1): 77-98, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37071930

RESUMO

Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.


Assuntos
Proteostase , Vírus , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus/genética
14.
Nature ; 617(7960): 344-350, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37076624

RESUMO

The criminal legal system in the USA drives an incarceration rate that is the highest on the planet, with disparities by class and race among its signature features1-3. During the first year of the coronavirus disease 2019 (COVID-19) pandemic, the number of incarcerated people in the USA decreased by at least 17%-the largest, fastest reduction in prison population in American history4. Here we ask how this reduction influenced the racial composition of US prisons and consider possible mechanisms for these dynamics. Using an original dataset curated from public sources on prison demographics across all 50 states and the District of Columbia, we show that incarcerated white people benefited disproportionately from the decrease in the US prison population and that the fraction of incarcerated Black and Latino people sharply increased. This pattern of increased racial disparity exists across prison systems in nearly every state and reverses a decade-long trend before 2020 and the onset of COVID-19, when the proportion of incarcerated white people was increasing amid declining numbers of incarcerated Black people5. Although a variety of factors underlie these trends, we find that racial inequities in average sentence length are a major contributor. Ultimately, this study reveals how disruptions caused by COVID-19 exacerbated racial inequalities in the criminal legal system, and highlights key forces that sustain mass incarceration. To advance opportunities for data-driven social science, we publicly released the data associated with this study at Zenodo6.


Assuntos
COVID-19 , Criminosos , Prisioneiros , Grupos Raciais , Humanos , Negro ou Afro-Americano/legislação & jurisprudência , Negro ou Afro-Americano/estatística & dados numéricos , COVID-19/epidemiologia , Criminosos/legislação & jurisprudência , Criminosos/estatística & dados numéricos , Prisioneiros/legislação & jurisprudência , Prisioneiros/estatística & dados numéricos , Estados Unidos/epidemiologia , Brancos/legislação & jurisprudência , Brancos/estatística & dados numéricos , Conjuntos de Dados como Assunto , Hispânico ou Latino/legislação & jurisprudência , Hispânico ou Latino/estatística & dados numéricos , Grupos Raciais/legislação & jurisprudência , Grupos Raciais/estatística & dados numéricos
15.
Adv Exp Med Biol ; 1404: 295-336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792882

RESUMO

Of the over 100 species in the genus Vibrio, approximately twelve are associated with clinical disease, such as cholera and vibriosis. Crucially, eleven of those twelve, including Vibrio cholerae and Vibrio vulnificus, have been isolated from birds. Since 1965, pathogenic Vibrio species have been consistently isolated from aquatic and ground-foraging bird species, which has implications for public health, as well as the One Health paradigm defined as an ecology-inspired, integrative framework for the study of health and disease, inclusive of environmental, human, and animal health. In this meta-analysis, we identified 76 studies from the primary literature which report on or examine birds as hosts for pathogenic Vibrio species. We found that the burden of disease in birds was most commonly associated with V. cholerae, followed by V. metschnikovii and V. parahaemolyticus. Meta-analysis wide prevalence of our Vibrio pathogens varied from 19% for V. parahaemolyticus to 1% for V. mimicus. Wild and domestic birds were both affected, which may have implications for conservation, as well as agriculturally associated avian species. As pathogenic Vibrios become more abundant throughout the world as a result of warming estuaries and oceans, susceptible avian species should be continually monitored as potential reservoirs for these pathogens.


Assuntos
Cólera , Vibrio cholerae , Vibrio vulnificus , Vibrio , Animais , Humanos , Aves
17.
J Exp Zool B Mol Dev Evol ; 340(1): 8-17, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451559

RESUMO

Despite several decades of computational and experimental work across many systems, evolvability remains on the periphery with regards to its status as a widely accepted and regularly applied theoretical concept. Here we propose that its marginal status is partly a result of large gaps between the diverse but disconnected theoretical treatments of evolvability and the relatively narrower range of studies that have tested it empirically. To make this case, we draw on a range of examples-from experimental evolution in microbes, to molecular evolution in proteins-where attempts have been made to mend this disconnect. We highlight some examples of progress that has been made and point to areas where synthesis and translation of existing theory can lead to further progress in the still-new field of empirical measurements of evolvability.


Assuntos
Evolução Biológica , Evolução Molecular , Animais
18.
Genetics ; 222(4)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36218390

RESUMO

The 1997 film Gattaca has emerged as a canonical pop culture reference used to discuss modern controversies in genetics and bioethics. It appeared in theaters a few years prior to the announcement of the "completion" of the human genome (2000), as the science of human genetics was developing a renewed sense of its social implications. The story is set in a near-future world in which parents can, with technological assistance, influence the genetic composition of their offspring on the basis of predicted life outcomes. The current moment-25 years after the film's release-offers an opportunity to reflect on where society currently stands with respect to the ideas explored in Gattaca. Here, we review and discuss several active areas of genetic research-genetic prediction, embryo selection, forensic genetics, and others-that interface directly with scenes and concepts in the film. On its silver anniversary, we argue that Gattaca remains an important reflection of society's expectations and fears with respect to the ways that genetic science has manifested in the real world. In accompanying supplemental material, we offer some thought questions to guide group discussions inside and outside of the classroom.

19.
PNAS Nexus ; 1(4): pgac143, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36060623

RESUMO

Seasonal influenza kills hundreds of thousands every year, with multiple constantly changing strains in circulation at any given time. A high mutation rate enables the influenza virus to evade recognition by the human immune system, including immunity acquired through past infection and vaccination. Here, we capture the genetic similarity of influenza strains and their evolutionary dynamics with genotype networks. We show that the genotype networks of influenza A (H3N2) hemagglutinin are characterized by heavy-tailed distributions of module sizes and connectivity indicative of critical behavior. We argue that (i) genotype networks are driven by mutation and host immunity to explore a subspace of networks predictable in structure and (ii) genotype networks provide an underlying structure necessary to capture the rich dynamics of multistrain epidemic models. In particular, inclusion of strain-transcending immunity in epidemic models is dependent upon the structure of an underlying genotype network. This interplay is consistent with self-organized criticality where the epidemic dynamics of influenza locates critical regions of its genotype network. We conclude that this interplay between disease dynamics and network structure might be key for future network analysis of pathogen evolution and realistic multistrain epidemic models.

20.
G3 (Bethesda) ; 12(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35920784

RESUMO

The dynamics of adaptation, reversion, and compensation have been central topics in microbial evolution, and several studies have attempted to resolve the population genetics underlying how these dynamics occur. However, questions remain regarding how certain features-the evolution of mutators and whether compensatory mutations alleviate costs fully or partially-may influence the evolutionary dynamics of compensation and reversion. In this study, we attempt to explain findings from experimental evolution by utilizing computational and theoretical approaches toward a more refined understanding of how mutation rate and the fitness effects of compensatory mutations influence adaptive dynamics. We find that high mutation rates increase the probability of reversion toward the wild type when compensation is only partial. However, the existence of even a single fully compensatory mutation is associated with a dramatically decreased probability of reversion to the wild type. These findings help to explain specific results from experimental evolution, where compensation was observed in nonmutator strains, but reversion (sometimes with compensation) was observed in mutator strains, indicating that real-world compensatory mutations are often unable to fully alleviate the costs associated with adaptation. Our findings emphasize the potential role of the supply and quality of mutations in crafting the dynamics of adaptation and reversal, with implications for theoretical population genetics and for biomedical contexts like the evolution of antibiotic resistance.


Assuntos
Genética Populacional , Taxa de Mutação , Adaptação Fisiológica/genética , Evolução Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...