Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(15): e2209964, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36661255

RESUMO

Graphite intercalation compounds (GICs) have a variety of functions due to their rich material variations, and thus, innovative methods for their synthesis are desired for practical applications. It is discovered that Na has a catalytic property that dramatically accelerates the formation of GICs. It is demonstrated that LiC6 n (n = 1, 2), KC8 , KC12 n (n = 2, 3, 4), and NaCx are synthesized simply by mixing alkali metals and graphite powder with Na at room temperature (≈25 °C), and AE C6 (AE  = Ca, Sr, Ba) are synthesized by heating Na-added reagents at 250 °C only for a few hours. The NaCx , formed by the mixing of C and Na, is understood to act as a reaction intermediate for a catalyst, thereby accelerating the formation of GICs by lowering the activation energy of intercalation. The Na-catalyzed method, which enables the rapid and mass synthesis of homogeneous GIC samples in a significantly simpler manner than conventional methods, is anticipated to stimulate research and development for GIC applications.

2.
Materials (Basel) ; 14(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885551

RESUMO

In this study, high-density magnesium diboride (MgB2) bulk superconductors were synthesized by spark plasma sintering (SPS) under pressure to improve the field dependence of the critical current density (Jc-B) in MgB2 bulk superconductors. We investigated the relationship between sintering conditions (temperature and time) and Jc-B using two methods, ex situ (sintering MgB2 synthesized powder) and in situ (reaction sintering of Mg and B powder), respectively. As a result, we found that higher density with suppressed particle growth and suppression of the formation of coarse particles of MgB4 and MgO were found to be effective in improving the Jc-B characteristics. In the ex situ method, the degradation of MgB2 due to pyrolysis was more severe at temperatures higher than 850 °C. The sample that underwent SPS treatment for a short time at 850 °C showed higher density and less impurity phase in the bulk, which improved the Jc-B properties. In addition, the in situ method showed very minimal impurity with a corresponding improvement in density and Jc-B characteristics for the sample optimized at 750 °C. Microstructural characterization and flux pinning (fP) analysis revealed the possibility of refined MgO inclusions and MgB4 phase as new pinning centers, which greatly contributed to the Jc-B properties. The contributions of the sintering conditions on fP for both synthesis methods were analyzed.

3.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493664

RESUMO

Magnetic superconductors are specific materials exhibiting two antagonistic phenomena, superconductivity and magnetism, whose mutual interaction induces various emergent phenomena, such as the reentrant superconducting transition associated with the suppression of superconductivity around the magnetic transition temperature (T m), highlighting the impact of magnetism on superconductivity. In this study, we report the experimental observation of the ferromagnetic order induced by superconducting vortices in the high-critical-temperature (high-T c) magnetic superconductor EuRbFe4As4 Although the ground state of the Eu2+ moments in EuRbFe4As4 is helimagnetism below T m, neutron diffraction and magnetization experiments show a ferromagnetic hysteresis of the Eu2+ spin alignment. We demonstrate that the direction of the Eu2+ moments is dominated by the distribution of pinned vortices based on the critical state model. Moreover, we demonstrate the manipulation of spin texture by controlling the direction of superconducting vortices, which can help realize spin manipulation devices using magnetic superconductors.

4.
Phys Chem Chem Phys ; 23(35): 19827-19833, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525149

RESUMO

We investigated the defect structures of polycrystalline CaKFe4As4 (CaK1144) superconductors by scanning transmission electron microscopy (STEM). The STEM studies revealed the presence of a one-layer CaFe2As2 (∼1 nm size) defect along the ab-plane, as observed in single crystalline CaK1144. Step-like CaFe2As2 defects are also observed. These nanoscale defects generate fine-sized stacking faults, a lattice mismatch, and stress field defects in the matrix of CaK1144 owing to the different sizes. Correlation of the defects in polycrystalline and single crystalline samples suggests that the defects type and their density depend on the synthesis conditions. A self-field critical current density (Jc) of 15.2 kA cm-2 was obtained at 5 K, and the curves were sustained above 30 K with a considerable Jc value of 1.4 kA cm-2. We investigated the relationship between the observed intrinsic defects and the behavior of the field dependence of Jc. The intrinsically intergrown planar defects, even in polycrystalline samples, are expected to be advantageous for various high-field applications of bulk CaK1144 superconductors.

5.
Inorg Chem ; 60(3): 1930-1936, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471514

RESUMO

New CrAs-based layered mixed-anion compounds Sr2ScCrAsO3 (SrScO-21113) and Ba3Sc2Cr2As2O5 (BaScO-32225) were synthesized, and their electronic structures and physical properties were investigated. The structures of these compounds comprise stacking of the anti-fluorite CrAs layer and perovskite-like SrScO or BaScO layers. The lattice constants of these compounds are relatively longer than those of the related compounds, such as BaCr2As2, owing to the insertion of a large perovskite blocking layer of SrScO/BaScO. While there are variations in the crystal structure of this system, such as 21113 and 32225, their chemical stability calculated by the first-principles calculations indicated that SrScO-21113 is energetically favorable compared to SrScO-32225. The formation energies of BaScO-32225 and BaScO-21113 are close to each other; in the experiment, while there was an indication of BaScO-21113 formation, only BaScO-32225 was formed as a single phase because of the low chemical stability of BaScO-21113. The partial density of states indicates that the majority of states are obtained from the 3d4-electrons of the Cr element hybridized modestly with p electrons at the Fermi energy. The magnetic properties of these compounds were paramagnetic, and they were different from related compounds, such as BaCr2As2, probably because of their long a-axis lengths. The temperature dependences of the electrical resistivities of both samples were in good agreement with the electronic band structure calculations. The variety of structures in the series of compounds with a CrAs layer results in different physical properties, and further development of new compounds may bring novel functionalities, such as superconductivity.

6.
Inorg Chem ; 59(19): 14290-14295, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32921044

RESUMO

It is generally difficult to quantify the amount of light elements in materials because of their low X-ray-scattering power, as this means that they cannot be easily estimated via X-ray analyses. Meanwhile, the recently reported layered superconductor, Sc20C8-xBxC20, requires a small amount of boron, which is a light element, for its structural stability. In this context, here, we quantitatively evaluate the optimal x value using both experimental and computational approaches. Using the high-pressure synthesis approach, which can maintain the starting composition even after sintering, we obtain the Sc20(C,B)8C20 phase by the reaction of the previously reported Sc15C19 and B (Sc15ByC19). Our experiments demonstrate that an increase in y values promotes the phase formation of the Sc20(C,B)8C20 structure; however, there appears to be an upper limit to the nominal y value to form this phase. The maximum critical temperature (Tc = 7.6 K) is found to correspond with the actual x value of x ≈ 5 under the assumption that the sample with the same Tc as the reported value (7.7 K) possesses the optimal x amount. Moreover, we construct the energy convex hull diagram by calculating the formation enthalpy based on first principles. Our computational results indicate that the composition of Sc20C4B4C20 (x = 4) is the most thermodynamically stable, which is reasonably consistent with the experimentally obtained value.

7.
Front Chem ; 8: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133343

RESUMO

A new germanate garnet compound, Ce2CaMg2Ge3O12, was synthesized via flux crystal growth. Truncated spherical, reddish-orange single crystals with a typical size of 0.1-0.3 mm were grown out of a BaCl2-CaCl2 melt. The single crystals were characterized by single-crystal X-ray diffraction analysis, which revealed that it adopted a cubic garnet-type structure with a = 12.5487(3) Å in the space group Ia-3d. Its composition is best described as A 3 B 2 C 3O12, where Ce/Ca, Mg, and Ge occupied the A, B, and C sites, respectively. A UV-vis absorption spectroscopy measurement on the germanate garnet revealed a clear absorption edge corresponding to a band gap of 2.21 eV (λ = 561 nm). First-principle calculations indicated that the valence band maximum was composed of Ce 4f bands, whereas the conduction band minimum mainly consisted of Ce 5d bands. These findings explain the observed absorption edge through the Ce 4f → 5d absorption. Photoluminescence emission spectra exhibited a very broad peak centered at 600 nm, corresponding to transition from the lowest energy d level to the 4f levels.

8.
Inorg Chem ; 58(22): 15629-15636, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31661255

RESUMO

The discovery of nearly room-temperature superconductivity in superhydrides has motivated further materials research for conventional superconductors. To realize the moderately high critical temperature (Tc) in materials containing light elements, we explored new superconducting phases in a scandium borocarbide system. Here, we report the observation of superconductivity in a new ternary Sc-B-C compound. The crystal structure, which was determined through a Rietveld analysis, belongs to tetragonal space group P4/ncc. By complementarily using the density functional theory calculations, a chemical formula of the compound was found to be expressed as Sc20C8-xBxC20 (x = 1 or 2). Interestingly, a small amount of B is essential to stabilize the present structure. Our experiments revealed the typical type-II superconductivity at Tc = 7.7 K. Additionally, we calculated the density of states within a first-principles approach and found that the contribution of the Sc-3d orbital was mainly responsible for the superconductivity.

9.
Angew Chem Int Ed Engl ; 58(3): 756-759, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30430710

RESUMO

Square-planar coordinate Ni2+ ions in oxides are exclusively limited to a low-spin state (S=0) owing to extensive crystal field splitting. Layered oxychalcogenides A2 NiII O2 Ag2 Se2 (A=Sr, Ba) with the S=1 NiO2 square lattice are now reported. The structural analysis revealed that the Ni2+ ion is under-bonded by a significant tensile strain from neighboring Ag2 Se2 layers, leading to the reduction in crystal field splitting. Ba2 NiO2 Ag2 Se2 exhibits a G-type spin order at 130 K, indicating fairly strong in-plane interactions. The high-pressure synthesis employed here possibly assists the expansion of NiO2 square lattice by taking the advantage of the difference in compressibility in oxide and selenide layers.

10.
Sci Rep ; 8(1): 16827, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429484

RESUMO

We synthesized a Fe-based superconductor (FeSC), (La,Na,K)Fe2As2, and characterized its superconducting properties. It was found that (La,Na,K)Fe2As2 has a 122-type (ThCr2Si2-type) structure with a space group I4/mmm (No. 139), identical to (Ba,K)Fe2As2 and (La,Na)Fe2As2 but distinct from so-called 1144-type FeSCs such as CaKFe4As4 and (La,Na)CsFe4As4. The results demonstrate that the formation of the 1144-type phase necessitates the large ionic radius mismatch among the so-called A-site constituent elements of the AFe2As2 formula. The lattice constants are a = 3.850(1) Å and c = 13.21(1) Å. The La, Na, and K ions occupy the same atomic site of Wyckoff position 1a. Electrical resistivity and magnetic susceptibility show the superconducting transition at 22.5 K. The transition temperature (Tc) of (La,Na,K)Fe2As2 is comparable with that of 122-type (La,Na)Fe2As2 and 1144-type (La,Na)AFe4As4 (A = Rb, Cs), while being more than 10 K lower than those of typical 122- and 1144-type FeSCs. The results suggest that the random distribution of La3+ and Na+ ions is the main reason for lower Tc in the AE = (La,Na) 122-type and 1144-type FeSCs.

11.
Inorg Chem ; 57(9): 5615-5623, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671318

RESUMO

We report the successful synthesis of three new Ruddlesden-Popper-type scandium oxychloride perovskites, Sr2ScO3Cl, Sr3Sc2O5Cl2, and Ba3Sc2O5Cl2, by conventional solid-state reaction. Small single crystals of Sr2ScO3Cl were obtained by a self-flux method, and the crystal structure was determined to belong to the tetragonal P4/ nmm space group ( a = 4.08066(14) Å, c = 14.1115(8) Å) by X-ray diffraction analysis. The scandium center forms a ScO5Cl octahedron with ordered apical oxygen and chlorine anions. The scandium cation, however, is shifted from the position of the octahedral center toward the apical oxygen anion, such that the coordination geometry of the Sc cation can be effectively viewed as an ScO5 pyramid. These structural features in the oxychloride are different from those of octahedral ScO5F coordinated with a partial O/F anion order at the apical sites in the oxyfluoride Sr2ScO3F. Rietveld refinements of the neutron powder diffraction data of Sr3Sc2O5Cl2 ( I4/ mmm: a = 4.107982(5) Å, c = 23.58454(7) Å) and Ba3Sc2O5Cl2 ( I4/ mmm: a = 4.206920(5) Å, c = 24.54386(6) Å) reveal the presence of pseudo ScO5 pyramids with the Cl anion being distant from the scandium cation, which is similar to the Sc-centered coordination geometry in Sr2ScO3Cl with the exception that the ScO5 pyramids form double layers by sharing the apical oxygen. Density functional calculations on Sr2ScO3Cl indicate the strong covalency of the Sc-O bonds but almost nonbonding interaction between Sc and Cl ions.

12.
J Phys Chem Lett ; 9(4): 868-873, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29412667

RESUMO

We discovered novel Fe-based superconductors (FeSCs) (La,Na)AFe4As4, where A = Rb or Cs, and characterized their superconducting properties. (La,Na)AFe4As4 is a so-called 1144-type compound with a tetragonal unit cell classified into space group P4/mmm (no. 123). The lattice constants are a = 3.861(1) Å and c = 13.26(1) Å for (La,Na)RbFe4As4 and a = 3.880(1) Å and c = 13.60(1) Å for (La,Na)CsFe4As4. The Rietveld refinement results on the powder X-ray diffraction suggest that the La/Na ratio is rather fixed as La:Na = 0.44(5):0.56(5). The electrical resistivity and magnetic susceptibility show superconducting transition at 25.5 K for (La,Na)RbFe4As4 and 24.0 K for (La,Na)CsFe4As4. The superconducting transition temperature (Tc) of (La,Na)AFe4As4 is comparable with that of 122-type (La,Na)Fe2As2 and lower than that of typical 122-type or 1144-type FeSCs by more than 10 K. The possible reasons for lower Tc are discussed in terms of the structural modification, carrier concentration, and chemical disorder.

13.
Chem Commun (Camb) ; 53(27): 3826-3829, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28322390

RESUMO

A new square-planar zinc oxyhalide, Sr2ZnO2Cl2, was successfully synthesized using a high-pressure method. Absorption spectroscopy revealed an indirect band gap of 3.66 eV. Electronic structure calculations indicated a strong hybridization between Zn 3dx2-y2 and O 2p orbitals, which is distinct from tetrahedrally coordinated ZnO.

14.
J Am Chem Soc ; 136(3): 846-9, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24387288

RESUMO

A new iron-based superconductor, (Ca,Pr)FeAs2, was discovered. Plate-like crystals of the new phase were obtained, and its crystal structure was investigated by single-crystal X-ray diffraction analysis. The structure was identified as the monoclinic system with space group P21/m, composed of two Ca(Pr) planes, Fe2As2 layers, and As2 zigzag chain layers. Plate-like crystals of the new phase showed superconductivity, with a T(c) of ~20 K in both magnetization and resistivity measurements.

15.
Sci Technol Adv Mater ; 10(1): 014604, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877255

RESUMO

The magnetic anisotropies and easy axes of magnetization at room temperature were determined, and the effects of rare-earth (RE) ions were clarified for RE-based cuprates, RE-doped bismuth-based cuprates and RE-doped Bi-based cobaltite regarding the grain orientation by magnetic field. The easy axis, determined from the powder orientation in a static field of 10 T, depended qualitatively on the type of RE ion for all three systems. On the other hand, the magnetization measurement of the c-axis oriented powders, aligned in static or rotating fields, revealed that the type of RE ion strongly affected not only the directions of the easy axis but also the absolute value of magnetic anisotropy, and an appropriate choice of RE ion is required to minimize the magnetic field used for grain orientation. We also studied the possibility of triaxial grain orientation in high-critical-temperature superconductors by a modulated oval magnetic field. In particular, triaxial orientation was attempted in a high-oxygen-pressure phase of orthorhombic RE-based cuprates Y2Ba4Cu7O y . Although the experiment was performed in epoxy resin, which is not practical, in-plane alignment within 3° was achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...