Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38343820

RESUMO

Fluorescence guided surgery (FGS) facilitates real time tumor delineation and is being rapidly established clinically. FGS efficacy is tied to the utilized dye and provided tumor contrast over healthy tissue. Apoptosis, a cancer hallmark, is a desirable target for tumor delineation. Here, we preclinically in vitro and in vivo, validate an apoptosis sensitive commercial carbocyanine dye (CJ215), with absorption and emission spectra suitable for near infrared (NIR, 650-900nm) and shortwave infrared (SWIR, 900-1700nm) fluorescence imaging (NIRFI, SWIRFI). High contrast SWIRFI for solid tumor delineation is demonstrated in multiple murine and human models including breast, prostate, colon, fibrosarcoma and intraperitoneal colorectal metastasis. Organ necropsy and imaging highlighted renal clearance of CJ215. SWIRFI and CJ215 delineated all tumors under ambient lighting with a tumor-to-muscle ratio up to 100 and tumor-to-liver ratio up to 18, from 24 to 168 h post intravenous injection with minimal uptake in healthy organs. Additionally, SWIRFI and CJ215 achieved non-contact quantifiable wound monitoring through commercial bandages. CJ215 provides tumor screening, guided resection, and wound healing assessment compatible with existing and emerging clinical solutions.

2.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609216

RESUMO

The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature as a primary hallmark of cancer. Developing vasculature is difficult to evaluate in vivo but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an on chip approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of metastatic renal cell carcinoma spheroids and endothelial cells in a 3D environment. Our model permitted real-time, high-resolution observation and assessment of tumor-induced angiogenesis, where endothelial cells sprout towards the tumor and mimic a vascular network. Bevacizumab, an angiogenic inhibitor, disrupted interactions between vessels and tumors, destroying the vascular network. The on chip approach enabled assessment of endothelial cell biology, vessel's functionality, drug delivery, and molecular expression of PSMA. Finally, observations in the vascularized tumor on chip permitted direct and conclusive quantification of this therapy in weeks as opposed to months in a comparable animal model. Teaser: Vascularized tumor on microfluidic chip provides opportunity to study targeted therapies and improves preclinical drug discovery.

3.
J Nucl Med ; 64(10): 1647-1653, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620049

RESUMO

Shortwave infrared (900-1,700 nm) fluorescence imaging (SWIRFI) has shown significant advantages over visible (400-650 nm) and near-infrared (700-900 nm) fluorescence imaging (reduced autofluorescence, improved contrast, tissue resolution, and depth sensitivity). However, there is a major lag in the clinical translation of preclinical SWIRFI systems and targeted SWIRFI probes. Methods: We preclinically show that the pH low-insertion peptide conjugated to indocyanine green (pHLIP ICG), currently in clinical trials, is an excellent candidate for cancer-targeted SWIRFI. Results: pHLIP ICG SWIRFI achieved picomolar sensitivity (0.4 nM) with binary and unambiguous tumor screening and resection up to 96 h after injection in an orthotopic breast cancer mouse model. SWIRFI tumor screening and resection had ambient light resistance (possible without gating or filtering) with outstanding signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values at exposures from 10 to 0.1 ms. These SNR and CNR values were also found for the extended emission of pHLIP ICG in vivo (>1,100 nm, 300 ms). Conclusion: SWIRFI sensitivity and ambient light resistance enabled continued tracer clearance tracking with unparalleled SNR and CNR values at video rates for tumor delineation (achieving a tumor-to-muscle ratio above 20). In total, we provide a direct precedent for the democratic translation of an ambient light resistant SWIRFI and pHLIP ICG ecosystem, which can instantly improve tumor resection.


Assuntos
Verde de Indocianina , Neoplasias , Animais , Camundongos , Ecossistema , Imagem Óptica/métodos
4.
ACS Nano ; 17(7): 6178-6192, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36971591

RESUMO

Macrophages comprise a significant portion of the immune cell compartment within tumors and are known contributors to tumor pathology; however, cancer immunotherapies targeting these cells are not clinically available. The iron oxide nanoparticle, ferumoxytol (FH), may be utilized as a nanophore for drug delivery to tumor-associated macrophages. We have demonstrated that a vaccine adjuvant, monophosphoryl lipid A (MPLA), can be stably captured within the carbohydrate shell of ferumoxytol without chemical modification of either the drug or the nanophore. This drug-nanoparticle combination (FH-MPLA) activated macrophages to an antitumorigenic phenotype at clinically relevant concentrations. In the immunotherapy-resistant B16-F10 model of murine melanoma, FH-MPLA treatment induced tumor necrosis and regression in combination with agonistic α-CD40 monoclonal antibody therapy. FH-MPLA, composed of clinically approved nanoparticle and drug payload, represents a potential cancer immunotherapy with translational relevance. FH-MPLA may be useful as an adjunctive therapy to existing antibody-based cancer immunotherapies which target only lymphocytic cells, reshaping the tumor immune environment.


Assuntos
Anticorpos Monoclonais , Melanoma , Camundongos , Animais , Preparações Farmacêuticas , Anticorpos Monoclonais/farmacologia , Óxido Ferroso-Férrico , Imunoterapia , Melanoma/tratamento farmacológico
5.
J Nucl Med ; 64(1): 177-182, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738902

RESUMO

Medical radioisotopes produce Cerenkov luminescence (CL) from charged subatomic particles (ß+/-) traveling faster than light in dielectric media (e.g., tissue). CL is a blue-weighted and continuous emission, decreasing proportionally to increasing wavelength. CL imaging (CLI) provides an economic PET alternative with the advantage of also being able to image ß- and α emitters. Like any optical modality, CLI is limited by the optical properties of tissue (scattering, absorption, and ambient photon removal). Shortwave-infrared (SWIR, 900-1700 nm) CL has been detected from MeV linear accelerators but not yet from keV medical radioisotopes. Methods: Indium-gallium-arsenide sensors and SWIR lenses were mounted onto an ambient light-excluding preclinical enclosure. An exposure and processing pipeline was developed for SWIR CLI and then performed across 6 radioisotopes at in vitro and in vivo conditions. Results: SWIR CL was detected from the clinical radioisotopes 90Y, 68Ga, 18F, 89Zr, 131I, and 32P (biomedical research). SWIR CLI's advantage over visible-wavelength (VIS) CLI (400-900 nm) was shown via increased light penetration and decreased scattering at depth. The SWIR CLI radioisotope sensitivity limit (8.51 kBq/µL for 68Ga), emission spectrum, and ex vivo and in vivo examples are reported. Conclusion: This work shows that radioisotope SWIR CLI can be performed with unmodified commercially available components. SWIR CLI has significant advantages over VIS CLI, with preserved VIS CLI features such as radioisotope radiance levels and dose response linearity. Further improvements in SWIR optics and technology are required to enable widespread adoption.


Assuntos
Radioisótopos de Gálio , Luminescência , Radioisótopos , Tomografia por Emissão de Pósitrons/métodos
6.
Nano Lett ; 21(10): 4217-4224, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33950695

RESUMO

Cerenkov imaging provides an opportunity to expand the application of approved radiotracers and therapeutic agents by utilizing them for optical approaches, which opens new avenues for nuclear imaging. The dominating Cerenkov radiation is in the UV/blue region, where it is readily absorbed by human tissue, reducing its utility in vivo. To solve this problem, we propose a strategy to shift Cerenkov light to the more penetrative red-light region through the use of a fluorescent down-conversion technique, based upon europium oxide nanoparticles. We synthesized square-shape ultrasmall Eu2O3 nanoparticles, functionalized with polyethylene glycol and chelate-free radiolabeled for intravenous injection into mice to visualize the lymph node and tumor. By adding trimethylamine N-oxide during the synthesis, we significantly increased the brightness of the particle and synthesized the (to-date) smallest radiolabeled europium-based nanoparticle. These features allow for the exploration of Eu2O3 nanoparticles as a preclinical cancer diagnosis platform with multimodal imaging capability.


Assuntos
Európio , Nanopartículas , Animais , Camundongos , Imagem Multimodal
7.
J Nucl Med ; 62(10): 1384-1390, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33712530

RESUMO

Pancreatic cancer (PC) remains the fourth leading cause of cancer death; therefore, there is a clinically unmet need for novel therapeutics and diagnostic markers to treat this devastating disease. Physicians often rely on biopsy or CT for diagnosis, but more specific protein biomarkers are highly desired to assess the stage and severity of PC in a noninvasive manner. Serum biomarkers such as carbohydrate antigen 19-9 are of particular interest as they are commonly elevated in PC but have exhibited suboptimal performance in the clinic. MUC5AC has emerged as a useful serum biomarker that is specific for PC versus inflammation. We developed RA96, an anti-MUC5AC antibody, to gauge its utility in PC diagnosis through immunohistochemical analysis and whole-body PET in PC. Methods: In this study, extensive biochemical characterization determined MUC5AC as the antigen for RA96. We then determined the utility of RA96 for MUC5AC immunohistochemistry on clinical PC and preclinical PC. Finally, we radiolabeled RA96 with 89Zr to assess its application as a whole-body PET radiotracer for MUC5AC quantification in PC. Results: Immunohistochemical staining with RA96 distinguished chronic pancreatitis, pancreatic intraepithelial neoplasia, and varying grades of pancreatic ductal adenocarcinoma in clinical samples. 89Zr-desferrioxamine-RA96 was able to detect MUC5AC with high specificity in mice bearing capan-2 xenografts. Conclusion: Our study demonstrated that RA96 can differentiate between inflammation and PC, improving the fidelity of PC diagnosis. Our immuno-PET tracer 89Zr-desferrioxamine-RA96 shows specific detection of MUC5AC-positive tumors in vivo, highlighting the utility of MUC5AC targeting for diagnosis of PC.


Assuntos
Neoplasias Pancreáticas , Biomarcadores Tumorais , Antígeno CA-19-9 , Imuno-Histoquímica , Neoplasias Pancreáticas
8.
Nat Commun ; 10(1): 1867, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000704

RESUMO

This Article contains an error in Figure 6. In panel b, the left-hand image is mistakenly described as showing fluorescence before treatment, while it in fact shows the same white light image as the right-hand panel without fluorescent overlay to better visualize the tumour location. A correct version of Figure 6b is presented in the accompanying Author Correction. The error has not been corrected in the original version of the Article.

9.
J Nucl Med ; 59(2): 210-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28912145

RESUMO

Positron lymphography using 18F-FDG followed by Cerenkov-guided resection of lymph nodes in healthy mice has previously been introduced by our group. Our aim in this study was to further assess the technique's potential beyond merely localizing sentinel lymph nodes. We now aimed to evaluate the potential of positron lymphography to characterize the nodes with respect to their tumor status in order to identify metastatic lymph nodes. We explored whether metastatic nodes could be distinguished from normal nodes via dynamic 18F-FDG lymphography, to then be resected under Cerenkov imaging guidance. Methods: A murine melanoma cell line highly metastatic to lymph nodes (B16F10) was implanted subcutaneously on the dorsal hind paw of C57 mice while the tumor-free contralateral leg served as an intraindividual control. A model of reactive lymph nodes after concanavalin A challenge served as an additional control to provide nonmalignant inflammatory lymphadenopathy. Dynamic PET/CT imaging was performed immediately after injection of 18F-FDG around the tumor or intracutaneously in the contralateral footpad. Furthermore, PET/CT and Cerenkov studies were performed repeatedly over time to follow the course of metastatic spread. In selected mice, popliteal lymph nodes underwent Cerenkov luminescence imaging. Hematoxylin and eosin staining was done to verify the presence of lymphatic melanoma infiltration. Results: Positron lymphography using 18F-FDG was successfully performed on tumor-bearing and non-tumor-bearing mice, as well as on controls bearing sites of inflammation; the results clearly identified the sentinel lymph node basin and delineated the lymphatic drainage. Significantly prolonged retention of activity was evident in metastatic nodes as compared with controls without tumor. On the basis of these results, the contrast in detection and identification of metastatic lymph nodes was distinct and could be used for guided lymph node resection, such as by using Cerenkov luminescence imaging. However, retention after 18F-FDG lymphography was also seen in acute inflammatory lymphadenopathy. Conclusion: In a tumor model, significantly longer retention of the radiotracer during 18F-FDG lymphography was seen in metastatic than nonmetastatic lymph nodes, allowing for differentiation between the two and for selective resection of tumor-bearing nodes using Cerenkov imaging. Inflammation can be better differentiated in a subacute state.


Assuntos
Fluordesoxiglucose F18 , Linfografia , Melanoma/diagnóstico por imagem , Melanoma/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Processamento de Imagem Assistida por Computador , Metástase Linfática , Camundongos
10.
Nat Commun ; 5: 3384, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24594970

RESUMO

The effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we demonstrate that clinically approved iron oxide nanoparticles (Ferumoxytol) can be utilized to carry one or multiple drugs. These so called 'nanophores' retain their cargo within their polymeric coating through weak electrostatic interactions and release it in slightly acidic conditions (pH 6.8 and below). The loading of drugs increases the nanophores' transverse T2 and longitudinal T1 nuclear magnetic resonance (NMR) proton relaxation times, which is proportional to amount of carried cargo. Chemotherapy with translational nanophores is more effective than the free drug in vitro and in vivo, without subjecting the drugs or the carrier nanoparticle to any chemical modification. Evaluation of cargo incorporation and payload levels in vitro and in vivo can be assessed via benchtop magnetic relaxometers, common NMR instruments or magnetic resonance imaging scanners.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Óxido Ferroso-Férrico/química , Concentração de Íons de Hidrogênio
11.
Nat Med ; 19(10): 1345-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24013701

RESUMO

In the era of personalized medicine, there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used; however, radioactive decay is a physical constant, and its signal is independent of biological interactions. Here, we introduce a framework of previously uncharacterized targeted and activatable probes that are excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. We accomplished this by using Cerenkov luminescence, the light produced by ß-particle-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to tumor identification from a conventional PET scan, we demonstrate the medical utility of our approach by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and represents a shift toward activatable nuclear medicine agents.


Assuntos
Diagnóstico por Imagem/métodos , Doença/classificação , Animais , Fluorescência , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons , Radioisótopos
12.
Proc Natl Acad Sci U S A ; 102(7): 2346-9, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15687503

RESUMO

The yeast cyclin-dependent kinase Srb10 phosphorylates various transcriptional activators as they activate transcription, and acidic transcriptional activating domains found on several activators directly bind Srb10. Here we show that the interaction between Srb10 (with its associated cyclin Srb11) and each of several different activating regions, in vitro, leads to the phosphorylation of peptide sequences attached to but outside of the activating regions themselves. In some cases, residues within the activating regions are also phosphorylated. The results define a mechanism by which a kinase is recruited to alternate substrates with diverse physiological consequences.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Ciclinas , Dados de Sequência Molecular , Mutagênese , Fosforilação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Transativadores/química , Transativadores/genética , Fatores de Transcrição
13.
Proc Natl Acad Sci U S A ; 99(13): 8591-6, 2002 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-12084920

RESUMO

P201 is a short (eight-residue) nonacidic peptide that comprises a strong transcriptional activating region when tethered to DNA in yeast. Here we identify the mediator protein Gal11 as an essential target of P201. Deletion of Gal11, which modestly decreases activation elicited by the typical acidic yeast activator, abolishes activation by DNA-tethered P201. A point mutation in Gal11, which has no effect on other Gal11 functions, also greatly diminishes activation by DNA-tethered P201. P201 binds to a fragment of Gal11 in vivo and in vitro, and the interaction is diminished by mutations in either component that decrease activation in vivo. P201, unlike the typical yeast acidic activating region, does not work in mammalian cells, which is consistent with the notion that the unique target of P201 (Gal11) is absent from mammalian cells.


Assuntos
Oligopeptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Complexo Mediador , Mutação Puntual , Ligação Proteica , Saccharomyces cerevisiae/genética , Deleção de Sequência , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...