Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 34(6): 1380-1392, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30281957

RESUMO

The impact of two different quality feeds, derived using two different harvest clarification processes, on protein A periodic counter-current chromatography (PCC) design and performance is investigated. Data from batch experiments were input into a model to design optimal PCC operating parameters specific to each feed material. The two clarification methods were: depth filtration using a wetlaid matrix which has Q-functionality; and a combination of depth filtration and chromatographic clarification, using a Q-functional nonwoven with a high anion exchange capacity (Emphaze™ AEX Hybrid Purifier) in which key impurities such as host cell DNA (HCDNA) and host cell proteins (HCP) are removed. The model predicted 34% better productivity for the chromatographically clarified cell culture fluid (CCCF) using a 4 column system, and productivity gains of 28% using only 3 columns enabling the option to simplify the protein A PCC strategy. Experimental validation of the predicted optimized PCC operating parameters using industrially relevant monoclonal antibody (mAb) CCCF feedstock over 100 cycles showed productivity gains of 49% for the chromatographically clarified material. HCP concentration was 11-fold lower, and HCDNA concentration was reduced by 4.4 Log Reduction Value (LRV) in the protein A PCC eluates. This work, therefore, demonstrates that the removal of HCDNA and HCP during clarification is an effective strategy for improving protein A PCC performance. This was achieved using the Emphaze™ AEX Hybrid Purifier which can be easily incorporated into a batch or continuous process, in a scalable fashion, without adding additional separate unit operations. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1380-1392, 2018.


Assuntos
Cromatografia por Troca Iônica/métodos , Distribuição Contracorrente/métodos , Proteína Estafilocócica A/química
2.
Biotechnol Prog ; 34(1): 130-140, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28884522

RESUMO

The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018.


Assuntos
Ensaios de Triagem em Larga Escala , Pichia/genética , Proteínas Recombinantes/genética , Fermentação , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética
3.
BMC Biotechnol ; 17(1): 79, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29126399

RESUMO

BACKGROUND: The lack of a universal influenza vaccine is a global health problem. Interest is now focused on structurally conserved protein domains capable of eliciting protection against a broad range of influenza virus strains. The long alpha helix (LAH) is an attractive vaccine component since it is one of the most conserved influenza hemagglutinin (HA) stalk regions. For an improved immune response, the LAH domain from H3N2 strain has been incorporated into virus-like particles (VLPs) derived from hepatitis B virus core protein (HBc) using recently developed tandem core technology. RESULTS: Fermentation conditions for recombinant HBc-LAH were established in yeast Pichia pastoris and a rapid and efficient purification method for chimeric VLPs was developed to match the requirements for industrial scale-up. Purified VLPs induced strong antibody responses against both group 1 and group 2 HA proteins in mice. CONCLUSION: Our results indicate that the tandem core technology is a useful tool for incorporation of highly hydrophobic LAH domain into HBc VLPs. Chimeric VLPs can be successfully produced in bioreactor using yeast expression system. Immunologic data indicate that HBc VLPs carrying the LAH antigen represent a promising universal influenza vaccine component.


Assuntos
Hemaglutininas Virais/isolamento & purificação , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vacinas contra Influenza/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Vírion/isolamento & purificação , Animais , Anticorpos Antivirais , Feminino , Hemaglutininas Virais/genética , Hemaglutininas Virais/imunologia , Hemaglutininas Virais/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Pichia/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Vírion/genética , Vírion/imunologia , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...