Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(9): e0070423, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37610233

RESUMO

The enzymatic conversion of lignocellulosic biomass to bioethanol depends on efficient enzyme systems with ß-glucosidase as one of the key components. In this study, we performed in-depth profiling of the various ß-glucosidases present in the genome of the hypercellulolytic fungus Penicillium funiculosum using genomics, transcriptomics, proteomics, and molecular dynamics simulation approaches. Of the eight ß-glucosidase genes identified in the P. funiculosum genome, three were predicted to be extracellular based on signal peptide prediction and abundance in the secretome. Among the three secreted ß-glucosidases, two belonged to the GH3 family and one belonged to the GH1 family. Homology models of these proteins predicted a deep and narrow active site for the GH3 ß-glucosidases (PfBgl3A and PfBgl3B) and a shallow open active site for the GH1 ß-glucosidase (PfBgl1A). The enzymatic assays indicated that P. funiculosum-secreted proteins showed high ß-glucosidase activities with prominent bands on the 4-methylumbelliferyl ß-D-glucopyranoside zymogram. To understand the contributory effects of each of the three secreted ß-glucosidases (PfBgls), the corresponding gene was deleted separately, and the effect of the deletion on the ß-glucosidase activity of the secretome was examined. Although not the most abundant, PfBgl3A was found to be one of the most important ß-glucosidases, as evidenced by a 42% reduction in ß-glucosidase activity in the ΔPfBgl3A strain. Our results advance the understanding of the genetic and biochemical nature of all ß-glucosidases produced by P. funiculosum and pave the way to design a superior biocatalyst for the hydrolysis of lignocellulosic biomass. IMPORTANCE Commercially available cellulases are primarily produced from Trichoderma reesei. However, external supplementation of the cellulase cocktail from this host with exogenous ß-glucosidase is often required to achieve the desired optimal saccharification of cellulosic feedstocks. This challenge has led to the exploration of other cellulase-producing strains. The nonmodel hypercellulolytic fungus Penicillium funiculosum has been studied in recent times and identified as a promising source of industrial cellulases mainly due to its ability to produce a balanced concoction of cellulolytic enzymes, including ß-glucosidases. Various genetic interventions targeted at strain improvement for cellulase production have been performed; however, the ß-glucosidases of this strain have remained largely understudied. This study, therefore, reports profiling of all eight ß-glucosidases of P. funiculosum via molecular and computational approaches. The results of this study provide useful insights that will establish the background for future engineering strategies to transform this fungus into an industrial workhorse.


Assuntos
Celulase , Trichoderma , Celulase/metabolismo , Proteômica , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Simulação de Dinâmica Molecular , Transcriptoma , Genômica , Trichoderma/genética
2.
Sci Rep ; 12(1): 17219, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241677

RESUMO

The production of second-generation fuels from lignocellulosic residues such as sugarcane bagasse (SCB) requires the synergistic interaction of key cellulose-degrading enzymes and accessory proteins for their complete deconstruction to useful monomeric sugars. Here, we recombinantly expressed and characterized unknown GH5 xylanase from P. funiculosum (PfXyn5) in Pichia pastoris, which was earlier found in our study to be highly implicated in SCB saccharification. The PfXyn5 has a molecular mass of ~ 55 kDa and showed broad activity against a range of substrates like xylan, xyloglucan, laminarin and p-nitrophenyl-ß-D-xylopyranoside, with the highest specific activity of 0.7 U/mg against xylan at pH 4.5 and 50 °C. Analysis of the degradation products of xylan and SCB by PfXyn5 showed significant production of xylooligosaccharides (XOS) with a degree of polymerization (DP) ranging from two (DP2) to six (DP6), thus, suggesting that the PfXyn5 is an endo-acting enzyme. The enzyme synergistically improved the saccharification of SCB when combined with the crude cellulase cocktail of P. funiculosum with a degree of synergism up to 1.32. The PfXyn5 was further expressed individually and simultaneously with a notable GH16 endoglucanase (PfEgl16) in a catabolite-derepressed strain of P. funiculosum, PfMig188, and the saccharification efficiency of the secretomes from the resulting transformants were investigated on SCB. The secretome of PfMig188 overexpressing Xyn5 or Egl16 increased the saccharification of SCB by 9% or 7%, respectively, over the secretome of PfMig188, while the secretome of dual transformant increased SCB saccharification by ~ 15% at the same minimal protein concentration.


Assuntos
Celulase , Saccharum , Celulase/metabolismo , Celulose/química , Endo-1,4-beta-Xilanases/química , Hidrólise , Saccharum/metabolismo , Açúcares/metabolismo , Talaromyces , Xilanos/metabolismo
3.
Biotechnol Biofuels ; 14(1): 171, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446097

RESUMO

BACKGROUND: Sugarcane bagasse (SCB) is an abundant feedstock for second-generation bioethanol production. This complex biomass requires an array of carbohydrate active enzymes (CAZymes), mostly from filamentous fungi, for its deconstruction to monomeric sugars for the production of value-added fuels and chemicals. In this study, we evaluated the repertoire of proteins in the secretome of a catabolite repressor-deficient strain of Penicillium funiculosum, PfMig188, in response to SCB induction and examined their role in the saccharification of SCB. RESULTS: A systematic approach was developed for the cultivation of the fungus with the aim of producing and understanding arrays of enzymes tailored for saccharification of SCB. To achieve this, the fungus was grown in media supplemented with different concentrations of pretreated SCB (0-45 g/L). The profile of secreted proteins was characterized by enzyme activity assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 280 proteins were identified in the secretome of PfMig188, 46% of them being clearly identified as CAZymes. Modulation of the cultivation media with SCB up to 15 g/L led to sequential enhancement in the secretion of hemicellulases and cell wall-modifying enzymes, including endo-ß-1,3(4)-glucanase (GH16), endo-α-1,3-glucanase (GH71), xylanase (GH30), ß-xylosidase (GH5), ß-1,3-galactosidase (GH43) and cutinase (CE5). There was ~ 122% and 60% increases in ß-xylosidase and cutinase activities, respectively. There was also a 36% increase in activities towards mixed-linked glucans. Induction of these enzymes in the secretome improved the saccharification performance to 98% (~ 20% increase over control), suggesting their synergy with core cellulases in accessing the recalcitrant region of SCB. CONCLUSION: Our findings provide an insight into the enzyme system of PfMig188 for degradation of complex biomass such as SCB and highlight the importance of adding SCB to the culture medium to optimize the secretion of enzymes specific for the saccharification of sugarcane bagasse.

4.
Biotechnol Biofuels ; 14(1): 31, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494787

RESUMO

BACKGROUND: Penicillium funiculosum NCIM1228 is a non-model filamentous fungus that produces high-quality secretome for lignocellulosic biomass saccharification. Despite having desirable traits to be an industrial workhorse, P. funiculosum has been underestimated due to a lack of reliable genetic engineering tools. Tolerance towards common fungal antibiotics had been one of the major hindrances towards development of reliable transformation tools against the non-model fungi. In this study, we sought to understand the mechanism of drug tolerance of P. funiculosum and the provision to counter it. We then attempted to identify a robust method of transformation for genome engineering of this fungus. RESULTS: Penicillium funiculosum showed a high degree of drug tolerance towards hygromycin, zeocin and nourseothricin, thereby hindering their use as selectable markers to obtain recombinant transformants. Transcriptome analysis suggested a high level expression of efflux pumps belonging to ABC and MFS family, especially when complex carbon was used in growth media. Antibiotic selection medium was optimized using a combination of efflux pump inhibitors and suitable carbon source to prevent drug tolerability. Protoplast-mediated and Agrobacterium-mediated transformation were attempted for identifying efficiencies of linear and circular DNA in performing genetic manipulation. After finding Ti-plasmid-based Agrobacterium-mediated transformation more suitable for P. funiculosum, we improvised the system to achieve random and homologous recombination-based gene integration and deletion, respectively. We found single-copy random integration of the T-DNA cassette and could achieve 60% efficiency in homologous recombination-based gene deletions. A faster, plasmid-free, and protoplast-based CRISPR/Cas9 gene-editing system was also developed for P. funiculosum. To show its utility in P. funiculosum, we deleted the gene coding for the most abundant cellulase Cellobiohydrolase I (CBH1) using a pair of sgRNA directed towards both ends of cbh1 open reading frame. Functional analysis of ∆cbh1 strain revealed its essentiality for the cellulolytic trait of P. funiculosum secretome. CONCLUSIONS: In this study, we addressed drug tolerability of P. funiculosum and developed an optimized toolkit for its genome modification. Hence, we set the foundation for gene function analysis and further genetic improvements of P. funiculosum using both traditional and advanced methods.

5.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978122

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are crucial industrial enzymes required in the biorefinery industry as well as in the natural carbon cycle. These enzymes, known to catalyze the oxidative cleavage of glycosidic bonds, are produced by numerous bacterial and fungal species to assist in the degradation of cellulosic biomass. In this study, we annotated and performed structural analysis of an uncharacterized LPMO from Penicillium funiculosum (PfLPMO9) based on computational methods in an attempt to understand the behavior of this enzyme in biomass degradation. PfLPMO9 exhibited 75% and 36% sequence identities with LPMOs from Thermoascus aurantiacus (TaLPMO9A) and Lentinus similis (LsLPMO9A), respectively. Furthermore, multiple fungal genetic manipulation tools were employed to simultaneously overexpress LPMO and cellobiohydrolase I (CBH1) in a catabolite-derepressed strain of Penicillium funiculosum, PfMig188 (an engineered variant of P. funiculosum), to improve its saccharification performance toward acid-pretreated wheat straw (PWS) at 20% substrate loading. The resulting transformants showed improved LPMO and CBH1 expression at both the transcriptional and translational levels, with ∼200% and ∼66% increases in ascorbate-induced LPMO and Avicelase activities, respectively. While the secretome of PfMig88 overexpressing LPMO or CBH1 increased the saccharification of PWS by 6% or 13%, respectively, over the secretome of PfMig188 at the same protein concentration, the simultaneous overexpression of these two genes led to a 20% increase in saccharification efficiency over that observed with PfMig188, which accounted for 82% saccharification of PWS under 20% substrate loading.IMPORTANCE The enzymatic hydrolysis of cellulosic biomass by cellulases continues to be a significant bottleneck in the development of second-generation biobased industries. While increasing efforts are being made to obtain indigenous cellulases for biomass hydrolysis, the high production cost of this enzyme remains a crucial challenge affecting its wide availability for the efficient utilization of cellulosic materials. This is because it is challenging to obtain an enzymatic cocktail with balanced activity from a single host. This report describes the annotation and structural analysis of an uncharacterized lytic polysaccharide monooxygenase (LPMO) gene in Penicillium funiculosum and its impact on biomass deconstruction upon overexpression in a catabolite-derepressed strain of P. funiculosum Cellobiohydrolase I (CBH1), which is the most important enzyme produced by many cellulolytic fungi for the saccharification of crystalline cellulose, was further overexpressed simultaneously with LPMO. The resulting secretome was analyzed for enhanced LPMO and exocellulase activities and the corresponding improvement in saccharification performance (by ∼20%) under high-level substrate loading using a minimal amount of protein.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Penicillium/enzimologia , Polissacarídeos/metabolismo
6.
Biotechnol Biofuels ; 11: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29416560

RESUMO

BACKGROUND: There is an urgent requirement for second-generation bio-based industries for economical yet efficient enzymatic cocktail to convert diverse cellulosic biomass into fermentable sugars. In our previous study, secretome of Penicillium funiculosum NCIM1228 showed high commercial potential by exhibiting high biomass hydrolyzing efficiency. To develop NCIM1228 further as an industrial workhorse, one of the major genetic interventions needed is global deregulation of cellulolytic genes to achieve higher enzyme production. Mig1 orthologs found in all yeast and filamentous fungi are transcriptional regulators that maintain carbon homeostasis by negatively regulating genes of secondary carbon source utilization. Their disruption has long been known to be beneficial for increasing the production of secreted enzymes for alternate carbon source utilization. RESULTS: Upon detailed genotypic and phenotypic analysis, we observed that NCIM1228 harbors a truncated yet functional allele of homolog of a well-known catabolite repressor, Mig1. Alleviation of carbon repression in NCIM1228 was attained by replacing functional Mig1134 allele with null allele Mig188. P. funiculosum having Mig188 null allele showed better growth characteristics and 1.75-fold better glucose utilization than parent strain. We also showed that visibly small colony size, one of the major characteristics of CCR disruptant strains in filamentous fungi, was not due to retarded growth, but altered hyphal morphology. CCR-disrupted strain PfMig188 showed profuse branching pattern in terminal hyphae resulting in small and compact colonies with compromised filamentous proliferation. We further observed that basal level expression of two major classes of cellulases, namely, cellobiohydrolase and endoglucanase, was regulated by Mig1134 in NCIM1228, whereas other two major classes, namely, xylanases and ß-glucosidase, were only marginally regulated. Finally, CCR disruption in P. funiculosum NCIM1228 led to prolonged cellulase induction in production medium resulting in twofold increased cellulase activity than the parent strain with maximum secreted protein titer being > 14 g/l. CONCLUSIONS: CCR-disrupted P. funiculosum showed better growth, enhanced carbon source utilization, profuse branching pattern in terminal hyphae, and higher cellulase activity than parent strain. Our findings are particularly important in shedding light on important functions performed by Mig1 in addition to its role as negative regulator of alternate carbon source utilization in filamentous fungi.

7.
Biochem Res Int ; 2016: 3978124, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977320

RESUMO

Production of ß-glucosidase from Fusarium oxysporum was investigated during degradation of some cellulosic substrates (Avicel, α-cellulose, carboxymethyl cellulose (CMC), and methylcellulose). Optimized production of ß-glucosidase using the cellulosic substrate that supported highest yield of enzyme was examined over 192 h fermentation period and varied pH of 3.0-11.0. The ß-glucosidase produced was characterized for its suitability for industrial application. Methyl cellulose supported the highest yield of ß-glucosidase (177.5 U/mg) at pH 6.0 and 30°C at 96 h of fermentation with liberation of 2.121 µmol/mL glucose. The crude enzyme had optimum activity at pH 5.0 and 70°C. The enzyme was stable over broad pH range of 4.0-7.0 with relative residual activity above 60% after 180 min of incubation. ß-glucosidase demonstrated high thermostability with 83% of its original activity retained at 70°C after 180 min of incubation. The activity of ß-glucosidase was enhanced by Mn(2+) and Fe(2+) with relative activities of 167.67% and 205.56%, respectively, at 5 mM and 360% and 315%, respectively, at 10 mM. The properties shown by ß-glucosidase suggest suitability of the enzyme for industrial applications in the improvement of hydrolysis of cellulosic compounds into fermentable sugars that can be used in energy generation and biofuel production.

8.
Biochem Res Int ; 2016: 1614370, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881077

RESUMO

The mechanism underlying the action of lignocellulolytic enzymes in biodegradation of lignocellulosic biomass remains unclear; hence, it is crucial to investigate enzymatic interactions involved in the process. In this study, degradation of corn cob by Sporothrix carnis and involvement of lignocellulolytic enzymes in biodegradation were investigated over 240 h cultivation period. About 60% degradation of corn cob was achieved by S. carnis at the end of fermentation. The yields of hydrolytic enzymes, cellulase and xylanase, were higher than oxidative enzymes, laccase and peroxidase, over 144 h fermentation period. Maximum yields of cellulase (854.4 U/mg) and xylanase (789.6 U/mg) were at 96 and 144 h, respectively. Laccase and peroxidase were produced cooperatively with maximum yields of 489.06 U/mg and 585.39 U/mg at 144 h. Drastic decline in production of cellulase at 144 h (242.01 U/mg) and xylanase at 192 h (192.2 U/mg) indicates that they play initial roles in biodegradation of lignocellulosic biomass while laccase and peroxidase play later roles. Optimal degradation of corn cob (76.6%) and production of hydrolytic and oxidative enzymes were achieved with 2.5% inoculum at pH 6.0. Results suggest synergy in interactions between the hydrolytic and oxidative enzymes which can be optimized for improved biodegradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...