Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Biomed Online ; 46(4): 713-727, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803887

RESUMO

RESEARCH QUESTION: What factors affect the proportion of chromosomally balanced embryos in structural rearrangement carriers? Is there any evidence for an interchromosomal effect (ICE)? DESIGN: Preimplantation genetic testing outcomes of 300 couples (198 reciprocal, 60 Robertsonian, 31 inversion and 11 complex structural rearrangement carriers) were assessed retrospectively. Blastocysts were analysed either by array-comparative genomic hybridization or next-generation sequencing techniques. ICE was investigated using a matched control group and sophisticated statistical measurement of effect size (φ). RESULTS: 300 couples underwent 443 cycles; 1835 embryos were analysed and 23.8% were diagnosed as both normal/balanced and euploid. The overall cumulative clinical pregnancy and live birth rates were 69.5% and 55.8%, respectively. Complex translocations and female age (≥35) were found to be risk factors associated with lower chance of having a transferable embryo (P < 0.001). Based on analysis of 5237 embryos, the cumulative de-novo aneuploidy rate was lower in carriers compared to controls (45.6% versus 53.4%, P < 0.001) but this was a 'negligible' association (φ < 0.1). A further assessment of 117,033 chromosomal pairs revealed a higher individual chromosome error rate in embryos of carriers compared to controls (5.3% versus 4.9%), which was also a 'negligible' association (φ < 0.1), despite a P-value of 0.007. CONCLUSIONS: These findings suggest that rearrangement type, female age and sex of the carrier have significant impacts on the proportion of transferable embryos. Careful examination of structural rearrangement carriers and controls indicated little or no evidence for an ICE. This study helps to provide a statistical model for investigating ICE and an improved personalized reproductive genetics assessment for structural rearrangement carriers.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Humanos , Feminino , Estudos Retrospectivos , Hibridização Genômica Comparativa , Taxa de Gravidez , Diagnóstico Pré-Implantação/métodos , Aberrações Cromossômicas , Translocação Genética , Testes Genéticos/métodos , Aneuploidia , Blastocisto , Fertilização in vitro
2.
EBioMedicine ; 84: 104246, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36099812

RESUMO

BACKGROUND: Primary Ovarian Insufficiency (POI), a public health problem, affects 1-3.7% of women under 40 yielding infertility and a shorter lifespan. Most causes are unknown. Recently, genetic causes were identified, mostly in single families. We studied an unprecedented large cohort of POI to unravel its molecular pathophysiology. METHODS: 375 patients with 70 families were studied using targeted (88 genes) or whole exome sequencing with pathogenic/likely-pathogenic variant selection. Mitomycin-induced chromosome breakages were studied in patients' lymphocytes if necessary. FINDINGS: A high-yield of 29.3% supports a clinical genetic diagnosis of POI. In addition, we found strong evidence of pathogenicity for nine genes not previously related to a Mendelian phenotype or POI: ELAVL2, NLRP11, CENPE, SPATA33, CCDC150, CCDC185, including DNA repair genes: C17orf53(HROB), HELQ, SWI5 yielding high chromosomal fragility. We confirmed the causal role of BRCA2, FANCM, BNC1, ERCC6, MSH4, BMPR1A, BMPR1B, BMPR2, ESR2, CAV1, SPIDR, RCBTB1 and ATG7 previously reported in isolated patients/families. In 8.5% of cases, POI is the only symptom of a multi-organ genetic disease. New pathways were identified: NF-kB, post-translational regulation, and mitophagy (mitochondrial autophagy), providing future therapeutic targets. Three new genes have been shown to affect the age of natural menopause supporting a genetic link. INTERPRETATION: We have developed high-performance genetic diagnostic of POI, dissecting the molecular pathogenesis of POI and enabling personalized medicine to i) prevent/cure comorbidities for tumour/cancer susceptibility genes that could affect life-expectancy (37.4% of cases), or for genetically-revealed syndromic POI (8.5% of cases), ii) predict residual ovarian reserve (60.5% of cases). Genetic diagnosis could help to identify patients who may benefit from the promising in vitro activation-IVA technique in the near future, greatly improving its success in treating infertility. FUNDING: Université Paris Saclay, Agence Nationale de Biomédecine.


Assuntos
Infertilidade , Insuficiência Ovariana Primária , Feminino , Humanos , Infertilidade/complicações , Mitomicinas , NF-kappa B , Medicina de Precisão , Insuficiência Ovariana Primária/etiologia
3.
Reproduction ; 156(1): F29-F50, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29945889

RESUMO

Designed to minimize chances of genetically abnormal embryos, preimplantation genetic diagnosis (PGD) involves in vitro fertilization (IVF), embryo biopsy, diagnosis and selective embryo transfer. Preimplantation genetic testing for aneuploidy (PGT-A) aims to avoid miscarriage and live born trisomic offspring and to improve IVF success. Diagnostic approaches include fluorescence in situ hybridization (FISH) and more contemporary comprehensive chromosome screening (CCS) including array comparative genomic hybridization (aCGH), quantitative polymerase chain reaction (PCR), next-generation sequencing (NGS) and karyomapping. NGS has an improved dynamic range, and karyomapping can detect chromosomal and monogenic disorders simultaneously. Mosaicism (commonplace in human embryos) can arise by several mechanisms; those arising initially meiotically (but with a subsequent post-zygotic 'trisomy rescue' event) usually lead to adverse outcomes, whereas the extent to which mosaics that are initially chromosomally normal (but then arise purely post-zygotically) can lead to unaffected live births is uncertain. Polar body (PB) biopsy is the least common sampling method, having drawbacks including cost and inability to detect any paternal contribution. Historically, cleavage-stage (blastomere) biopsy has been the most popular; however, higher abnormality levels, mosaicism and potential for embryo damage have led to it being superseded by blastocyst (trophectoderm - TE) biopsy, which provides more cells for analysis. Improved biopsy, diagnosis and freeze-all strategies collectively have the potential to revolutionize PGT-A, and there is increasing evidence of their combined efficacy. Nonetheless, PGT-A continues to attract criticism, prompting questions of when we consider the evidence base sufficient to justify routine PGT-A? Basic biological research is essential to address unanswered questions concerning the chromosome complement of human embryos, and we thus entreat companies, governments and charities to fund more. This will benefit both IVF patients and prospective parents at risk of aneuploid offspring following natural conception. The aim of this review is to appraise the 'state of the art' in terms of PGT-A, including the controversial areas, and to suggest a practical 'way forward' in terms of future diagnosis and applied research.


Assuntos
Hibridização Genômica Comparativa , Fertilização in vitro , Diagnóstico Pré-Implantação , Adulto , Técnicas de Cultura Embrionária , Feminino , Humanos , Cariotipagem , Mosaicismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA