Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(20): 5249-5252, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831839

RESUMO

Neural networks (NNs) have demonstrated remarkable capabilities in various tasks, but their computation-intensive nature demands faster and more energy-efficient hardware implementations. Optics-based platforms, using technologies such as silicon photonics and spatial light modulators, offer promising avenues for achieving this goal. However, training multiple programmable layers together with these physical systems poses challenges, as they are difficult to fully characterize and describe with differentiable functions, hindering the use of error backpropagation algorithm. The recently introduced forward-forward algorithm (FFA) eliminates the need for perfect characterization of the physical learning system and shows promise for efficient training with large numbers of programmable parameters. The FFA does not require backpropagating an error signal to update the weights, rather the weights are updated by only sending information in one direction. The local loss function for each set of trainable weights enables low-power analog hardware implementations without resorting to metaheuristic algorithms or reinforcement learning. In this paper, we present an experiment utilizing multimode nonlinear wave propagation in an optical fiber demonstrating the feasibility of the FFA approach using an optical system. The results show that incorporating optical transforms in multilayer NN architectures trained with the FFA can lead to performance improvements, even with a relatively small number of trainable weights. The proposed method offers a new path to the challenge of training optical NNs and provides insights into leveraging physical transformations for enhancing the NN performance.

2.
Nat Comput Sci ; 1(8): 542-549, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38217249

RESUMO

Today's heavy machine learning tasks are fueled by large datasets. Computing is performed with power-hungry processors whose performance is ultimately limited by the data transfer to and from memory. Optics is a powerful means of communicating and processing information, and there is currently intense interest in optical information processing for realizing high-speed computations. Here we present and experimentally demonstrate an optical computing framework called scalable optical learning operator, which is based on spatiotemporal effects in multimode fibers for a range of learning tasks including classifying COVID-19 X-ray lung images, speech recognition and predicting age from images of faces. The presented framework addresses the energy scaling problem of existing systems without compromising speed. We leverage simultaneous, linear and nonlinear interaction of spatial modes as a computation engine. We numerically and experimentally show the ability of the method to execute several different tasks with accuracy comparable with a digital implementation.

3.
Light Sci Appl ; 7: 108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564314

RESUMO

Parasitic infections constitute a major global public health issue. Existing screening methods that are based on manual microscopic examination often struggle to provide sufficient volumetric throughput and sensitivity to facilitate early diagnosis. Here, we demonstrate a motility-based label-free computational imaging platform to rapidly detect motile parasites in optically dense bodily fluids by utilizing the locomotion of the parasites as a specific biomarker and endogenous contrast mechanism. Based on this principle, a cost-effective and mobile instrument, which rapidly screens ~3.2 mL of fluid sample in three dimensions, was built to automatically detect and count motile microorganisms using their holographic time-lapse speckle patterns. We demonstrate the capabilities of our platform by detecting trypanosomes, which are motile protozoan parasites, with various species that cause deadly diseases affecting millions of people worldwide. Using a holographic speckle analysis algorithm combined with deep learning-based classification, we demonstrate sensitive and label-free detection of trypanosomes within spiked whole blood and artificial cerebrospinal fluid (CSF) samples, achieving a limit of detection of ten trypanosomes per mL of whole blood (~five-fold better than the current state-of-the-art parasitological method) and three trypanosomes per mL of CSF. We further demonstrate that this platform can be applied to detect other motile parasites by imaging Trichomonas vaginalis, the causative agent of trichomoniasis, which affects 275 million people worldwide. With its cost-effective, portable design and rapid screening time, this unique platform has the potential to be applied for sensitive and timely diagnosis of neglected tropical diseases caused by motile parasites and other parasitic infections in resource-limited regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA