Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Electr Eng Technol ; 18(2): 719-733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521955

RESUMO

With increasing demand for energy, the penetration of alternative sources such as renewable energy in power grids has increased. Solar energy is one of the most common and well-known sources of energy in existing networks. But because of its non-stationary and non-linear characteristics, it needs to predict solar irradiance to provide more reliable Photovoltaic (PV) plants and manage the power of supply and demand. Although there are various methods to predict the solar irradiance. This paper gives the overview of recent studies with focus on solar irradiance forecasting with ensemble methods which are divided into two main categories: competitive and cooperative ensemble forecasting. In addition, parameter diversity and data diversity are considered as competitive ensemble forecasting and also preprocessing and post-processing are as cooperative ensemble forecasting. All these ensemble forecasting methods are investigated in this study. In the end, the conclusion has been drawn and the recommendations for future studies have been discussed.

2.
Sensors (Basel) ; 21(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572292

RESUMO

A delivery service using unmanned aerial vehicles (UAVs) has potential as a future business opportunity, due to its speed, safety and low-environmental impact. To operate a UAV delivery network, a management system is required to optimize UAV delivery routes. Therefore, we create a routing algorithm to find optimal round-trip routes for UAVs, which deliver goods from depots to customers. Optimal routes per UAV are determined by minimizing delivery distances considering the maximum range and loading capacity of the UAV. In order to accomplish this, we propose an algorithm with four steps. First, we build a virtual network to describe the realistic environment that UAVs would encounter during operation. Second, we determine the optimal number of in-service UAVs per depot. Third, we eliminate subtours, which are infeasible routes, using flow variables part of the constraints. Fourth, we allocate UAVs to customers minimizing delivery distances from depots to customers. In this process, we allow multiple UAVs to deliver goods to one customer at the same time. Finally, we verify that our algorithm can determine the number of UAVs in service per depot, round-trip routes for UAVs, and allocate UAVs to customers to deliver at the minimum cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...