Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(44): 53111-53119, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709790

RESUMO

Electronic skin (E-skin) based on tactile sensors has great significance in next-generation electronics such as biomedical application and artificial intelligence that requires interaction with humans. To mimic the properties of human skin, high flexibility, excellent sensing capability, and sufficient spatial resolution through high-level sensor integration are required. Here, we report a highly sensitive pressure sensor matrix based on a piezoresistive cellulose/single-walled carbon nanotube-entangled fiber network, which forms its own porous structure enabling a superior pressure sensor with a high sensitivity (9.097 kPa-1), a fast response speed (<2 ms), and orders of magnitude detection range with a detection limit of 1 Pa. Furthermore, the remarkable device expandability based on the ease of patterning and scalability allows easy implementation of a large-area pressure sensor matrix which has 2304 (48 × 48) pixels. Combined with a real-time pressure distribution monitoring system, a flexible 3D touch sensor that simultaneously displays plane coordinates and pressure information and a scanning device that detects the morphology of the soft body 3D surface are successfully demonstrated.

2.
Nat Commun ; 11(1): 663, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005935

RESUMO

The ability to image pressure distribution over complex three-dimensional surfaces would significantly augment the potential applications of electronic skin. However, existing methods show poor spatial and temporal fidelity due to their limited pixel density, low sensitivity, or low conformability. Here, we report an ultraflexible and transparent electroluminescent skin that autonomously displays super-resolution images of pressure distribution in real time. The device comprises a transparent pressure-sensing film with a solution-processable cellulose/nanowire nanohybrid network featuring ultrahigh sensor sensitivity (>5000 kPa-1) and a fast response time (<1 ms), and a quantum dot-based electroluminescent film. The two ultrathin films conform to each contact object and transduce spatial pressure into conductivity distribution in a continuous domain, resulting in super-resolution (>1000 dpi) pressure imaging without the need for pixel structures. Our approach provides a new framework for visualizing accurate stimulus distribution with potential applications in skin prosthesis, robotics, and advanced human-machine interfaces.


Assuntos
Engenharia Biomédica/instrumentação , Pressão , Pele/química , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Condutividade Elétrica , Humanos , Imageamento Tridimensional , Nanofios/química
3.
Adv Sci (Weinh) ; 6(5): 1801682, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886798

RESUMO

Precise monitoring of human body signals can be achieved by soft, conformal contact and precise arrangement of wearable devices to the desired body positions. So far, no design and fabrication methodology in soft wearable devices is able to address the variations in the form factor of the human body such as the various sizes and shapes of individual body parts, which can significantly cause misalignments and the corresponding inaccurate monitoring. Here, a concept of soft modular electronic blocks (SMEBs) enabling the assembly of soft wearable systems onto human skin with functions and layouts tailored to the form factors of individuals' bodies is presented. Three types of SMEBs are developed as fundamental building blocks for functional modularization. The physical design of SMEBs is optimized for a mechanically stable island-bridge configuration. The prepared SMEBs can be integrated onto a target body part through rapid, room-temperature (RT) assembly (<5 s) using an oxygen plasma-induced siloxane bonding method. A soft metacarpophalangeal (MP) joints flexion monitoring system that is tailored to allow for accurate monitoring for multiple individuals with unique joint and hand sizes is demonstrated.

4.
Sci Robot ; 3(18)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33141703

RESUMO

Designing softness into robots holds great potential for augmenting robotic compliance in dynamic, unstructured environments. However, despite the body's softness, existing models mostly carry inherent hardness in their driving parts, such as pressure-regulating components and rigid circuit boards. This compliance gap can frequently interfere with the robot motion and makes soft robotic design dependent on rigid assembly of each robot component. We present a skin-like electronic system that enables a class of wirelessly activated fully soft robots whose driving part can be softly, compactly, and reversibly assembled. The proposed system consists of two-part electronic skins (e-skins) that are designed to perform wireless communication of the robot control signal, namely, "wireless inter-skin communication," for untethered, reversible assembly of driving capability. The physical design of each e-skin features minimized inherent hardness in terms of thickness (<1 millimeter), weight (~0.8 gram), and fragmented circuit configuration. The developed e-skin pair can be softly integrated into separate soft body frames (robot and human), wirelessly interact with each other, and then activate and control the robot. The e-skin-integrated robotic design is highly compact and shows that the embedded e-skin can equally share the fine soft motions of the robot frame. Our results also highlight the effectiveness of the wireless inter-skin communication in providing universality for robotic actuation based on reversible assembly.

5.
Sci Rep ; 7: 45328, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338055

RESUMO

Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

6.
Sci Rep ; 6: 34632, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694856

RESUMO

A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson's ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson's ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...