Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Stroke ; 25(2): 251-265, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37106564

RESUMO

BACKGROUND AND PURPOSE: This study aimed to evaluate whether extracellular-vesicle-incorporated microRNAs (miRNAs) are potential biomarkers for cancer-related stroke. METHODS: This cohort study compared patients with active cancer who had embolic stroke of unknown sources (cancer-stroke group) with patients with only cancer, patients with only stroke, and healthy individuals (control groups). The expression profiles of miRNAs encapsulated in plasma exosomes and microvesicles were evaluated using microarray and validated using quantitative real-time polymerase chain reaction. The XENO-QTM miRNA assay technology was used to determine the absolute copy numbers of individual miRNAs in an external validation cohort. RESULTS: This study recruited 220 patients, of which 45 had cancer-stroke, 76 were healthy controls, 39 were cancer controls, and 60 were stroke controls. Three miRNAs (miR-205-5p, miR-645, and miR-646) were specifically incorporated into microvesicles in patients with cancer-related stroke, cancer controls, and stroke controls. The area under the receiver operating characteristic curves of these three miRNAs were 0.7692-0.8510 for the differentiation of patients with cancer-stroke from cancer-controls and 0.8077-0.8846 for the differentiation of patients with cancer-stroke from stroke controls. The levels of several miRNAs were elevated in the plasma exosomes of patients with cancer, but were lower than those in plasma microvesicles. An in vivo study showed that systemic injection of miR-205-5p promoted the development of arterial thrombosis and elevation of D-dimer levels. CONCLUSION: Stroke due to cancer-related coagulopathy was associated with deregulated expression of miRNAs, particularly microvesicle-incorporated miR-205-5p, miR-645, and miR-646. Further prospective studies of extracellular-vesicle-incorporated miRNAs are required to confirm the diagnostic role of miRNAs in patients with stroke and to screen the roles of miRNAs in patients with cancer.

2.
Mol Cells ; 45(4): 180-192, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35258009

RESUMO

Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator of nuclear receptors and other transcription factors. A general Ncoa6 knockout mouse was previously shown to be embryonic lethal, but we here generated liver-specific Ncoa6 knockout (Ncoa6 LKO) mice to investigate the metabolic function of NCOA6 in the liver. These Ncoa6 LKO mice exhibited similar blood glucose and insulin levels to wild type but showed improvements in glucose tolerance, insulin sensitivity, and pyruvate tolerance. The decrease in glucose production from pyruvate in these LKO mice was consistent with the abrogation of the fasting-stimulated induction of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc). The forskolin-stimulated inductions of Pck1 and G6pc were also dramatically reduced in primary hepatocytes isolated from Ncoa6 LKO mice, whereas the expression levels of other gluconeogenic gene regulators, including cAMP response element binding protein (Creb), forkhead box protein O1 and peroxisome proliferator-activated receptor γ coactivator 1α, were unaltered in the LKO mouse livers. CREB phosphorylation via fasting or forskolin stimulation was normal in the livers and primary hepatocytes of the LKO mice. Notably, it was observed that CREB interacts with NCOA6. The transcriptional activity of CREB was found to be enhanced by NCOA6 in the context of Pck1 and G6pc promoters. NCOA6-dependent augmentation was abolished in cAMP response element (CRE) mutant promoters of the Pck1 and G6pc genes. Our present results suggest that NCOA6 regulates hepatic gluconeogenesis by modulating glucagon/cAMP-dependent gluconeogenic gene transcription through an interaction with CREB.


Assuntos
Gluconeogênese , Fígado , Coativadores de Receptor Nuclear , Ácido Pirúvico , Animais , Colforsina/metabolismo , Colforsina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gluconeogênese/genética , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativadores de Receptor Nuclear/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ácido Pirúvico/metabolismo
3.
FASEB J ; 34(12): 16276-16290, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078455

RESUMO

Clusterin (CLU) is a heterodimeric glycoprotein involved in a range of biological processes. We investigated the function of CLU as a novel regulator of adipogenesis. CLU expression increased during 3T3-L1 preadipocyte differentiation. CLU overexpression promoted adipogenic differentiation of preadipocytes and increased the mRNA levels of adipogenic markers including peroxisome proliferator-activated receptor γ (Pparg) and CCAAT enhancer-binding protein α (Cebpa). Conversely, knockdown of CLU attenuated adipogenesis and reduced transcript levels of Pparg and Cebpa. However, the promoter activities of both the Pparg and the Cebpa gene were not affected by alteration of CLU expression on its own. Additionally, the protein level of Krüppel-like factor 5 (KLF5), an upstream transcription factor of Pparg and Cebpa involved in adipogenic differentiation, was upregulated by CLU overexpression, although the mRNA level of Klf5 was not altered by changes in the expression level of CLU. Cycloheximide chase assay showed that the increased level of KLF5 by CLU overexpression was due to decreased degradation of KLF5 protein. Interestingly, CLU increased the stability of KLF5 by decreasing KLF5 ubiquitination. CLU inhibited the interaction between KLF5 and F-box/WD repeat-containing protein 7, which is an E3 ubiquitin ligase that targets KLF5. The adipogenic role of CLU was also addressed in mesenchymal stem cells (MSCs) and Clu-/- mouse embryonic fibroblasts (MEFs). Furthermore, CLU enhanced KLF5-mediated transcriptional activation of both the Cebpa and the Pparg promoter. Taken together, these results suggest that CLU is a novel regulator of adipocyte differentiation by modulating the protein stability of the adipogenic transcription factor KLF5.


Assuntos
Adipócitos/fisiologia , Diferenciação Celular/genética , Clusterina/genética , Fatores de Transcrição Kruppel-Like/genética , Células 3T3-L1 , Adipogenia/genética , Animais , Linhagem Celular , Fibroblastos/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
4.
Biochem Biophys Res Commun ; 487(3): 600-606, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28435063

RESUMO

Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator and crucial for insulin secretion and glucose metabolism in pancreatic ß-cells. However, the regulatory mechanism of ß-cell function by NCOA6 is largely unknown. In this study, we found that the transcript levels of nicotinamide phosphoribosyltransferase (Nampt) were decreased in islets of NCOA6+/- mice compared with NCOA6+/+ mice. Moreover, NCOA6 overexpression increased the levels of Nampt transcripts in the mouse pancreatic ß-cell line NIT-1. Promoter analyses showed that transcriptional activity of the Nampt promoter was stimulated by cooperation of sterol regulatory element binding protein-1c (SREBP-1c) and NCOA6. Additional studies using mutant promoters demonstrated that SREBP-1c activates Nampt promoter through the sterol regulatory element (SRE), but not through the E-box. Using chromatin immunoprecipitation assay, NCOA6 was also shown to be directly recruited to the SRE region of the Nampt promoter. Furthermore, treatment with nicotinamide mononucleotide (NMN), a product of the Nampt reaction and a key NAD+ intermediate, ameliorates glucose-stimulated insulin secretion from NCOA6+/- islets. These results suggest that NCOA6 stimulates insulin secretion, at least partially, by modulating Nampt expression in pancreatic ß-cells.


Assuntos
Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Ativação Transcricional/genética , Animais , Células Cultivadas , Citocinas/genética , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Mononucleotídeo de Nicotinamida/farmacologia , Nicotinamida Fosforribosiltransferase/genética , Coativadores de Receptor Nuclear/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Biochem Biophys Res Commun ; 465(3): 501-6, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26282207

RESUMO

Clusterin (also known as apolipoprotein J) is a highly conserved glycoprotein involved in various biological processes, including attenuation of complement activity, sperm maturation, apoptosis, and reverse lipid transport. Although clusterin is reportedly associated with metabolic diseases, the metabolic regulation of clusterin expression is largely unknown. We investigated the effect of insulin on hepatic clusterin expression and its underlying mechanisms. Insulin increased the mRNA and protein levels of clusterin in primary hepatocytes and hepatoma cell lines. Serial deletion and mutant analysis of the clusterin promoter demonstrated that insulin-stimulated transactivation is mediated via a non-canonical E-box (NCE-box) motif in the proximal upstream region. Interestingly, sterol regulatory element binding protein-1c (SREBP-1c) co-transfection showed the same transactivation pattern as insulin stimulation in serial deletion and mutant promoter analysis. In contrast, co-transfection with a dominant negative form of SREBP-1c inhibited insulin-stimulated clusterin expression. Furthermore, insulin increased the recruitment of SREBP-1c to the NCE-box of the clusterin promoter region. Taken together, our results suggest that an NCE-box within the clusterin promoter is necessary for insulin-stimulated hepatic expression of clusterin via SREBP-1c.


Assuntos
Clusterina/metabolismo , Elementos E-Box/genética , Hepatócitos/fisiologia , Insulina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Células Cultivadas , Clusterina/genética , Camundongos , Camundongos Endogâmicos C57BL
6.
J Pharmacol Sci ; 128(2): 71-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26109499

RESUMO

20(S)-protopanaxatriol (PPT) is an aglycone of ginsenosides isolated from Panax ginseng and has several interesting activities, including anti-inflammatory and anti-oxidative stress effects. Herein, PPT was identified as an inhibitor against the ligand-dependent transactivation of liver X receptor α (LXRα) using a Gal4-TK-luciferase reporter system. LXRα is a transcription factor of nuclear hormone receptor family and stimulates the transcription of many metabolic genes, such as lipogenesis- or reverse cholesterol transport (RCT)-related genes. Quantitative RT-PCR analysis showed that PPT inhibited the LXRα-dependent transcription of lipogenic genes, such as sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase, and stearoyl CoA desaturase 1. These inhibitory effects of PPT are, at least in part, a consequence of the reduced recruitment of RNA polymerase II to the LXR response element (LXRE) of the SREBP-1c promoter. Furthermore, LXRα-dependent triglyceride accumulation in primary mouse hepatocytes was significantly reduced by PPT. Interestingly, PPT did not inhibit the LXRα-dependent transcription of ABCA1, a crucial LXRα target gene involved in RCT. Chromatin immunoprecipitation assays revealed that PPT repressed recruitment of the lipogenic coactivator TRAP80 to the SREBP-1c LXRE, but not the ABCA1 LXRE. Overall, these data suggest that PPT has selective inhibitory activity against LXRα-mediated lipogenesis, but not LXRα-stimulated RCT.


Assuntos
Ginsenosídeos/farmacologia , Hepatócitos/metabolismo , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Receptores Nucleares Órfãos/antagonistas & inibidores , Sapogeninas/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Células Cultivadas , Colesterol/metabolismo , Receptores X do Fígado , Masculino , Complexo Mediador/metabolismo , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/fisiologia , Triglicerídeos/metabolismo
7.
Am J Chin Med ; 43(3): 477-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25967664

RESUMO

The goals of this study were (1) to examine the effects of Cyperus rotundus (CR) rhizome on cellular lipogenesis and non-alcoholic/diet-induced fatty liver disease, and (2) to elucidate the molecular mechanism behind its actions. The present investigation showed that the hexane fraction of CR rhizome (CRHF) reduced the elevated transcription levels of sterol regulatory element binding protein-1c (SREBP-1c) in primary hepatocytes following exposure to the liver X receptor α (LXRα) agonist. The SREBP-1c gene is a master regulator of lipogenesis and a key target of LXRα. CRHF inhibited not only the LXRα-dependent activation of the synthetic LXR response element (LXRE) promoter, but also the activation of the natural SREBP-1c promoter. Moreover, CRHF decreased (a) the recruitment of RNA polymerase II to the LXRE of the SREBP-1c gene; (b) the LXRα-dependent up-regulation of various lipogenic genes; and (c) the LXRα-mediated accumulation of triglycerides in primary hepatocytes. Furthermore, CRHF ameliorated fatty liver disease and reduced the expression levels of hepatic lipogenic genes in high sucrose diet (HSD)-fed mice. Interestingly, CRHF did not affect the expression of ATP-binding cassette transporter A1, another important LXR target gene that is required for reverse cholesterol transport (RCT) and protects against atherosclerosis. Taken together, these results suggest that CRHF might be a novel therapeutic remedy for fatty liver disease through the selective inhibition of the lipogenic pathway.


Assuntos
Cyperus , Hexanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores Nucleares Órfãos/fisiologia , Extratos Vegetais/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Células Cultivadas , Hepatócitos/metabolismo , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Receptores X do Fígado , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , Fitoterapia , Extratos Vegetais/uso terapêutico , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Polimerase II/metabolismo , Transcrição Gênica/efeitos dos fármacos , Triglicerídeos/metabolismo
8.
Chin Med ; 10: 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25937827

RESUMO

BACKGROUND: Sterol regulatory element binding protein-1c (SREBP-1c) is a regulator of the lipogenic pathway and is transcriptionally activated by liver X receptor α (LXRα). This study aims to investigate phytochemicals inhibiting the autonomous transactivity of LXRα with potentials as SREBP-1c inhibitors. Licochalcone A (LicA) is a flavonoid isolated from licorice root of Glycyrrhiza plant. METHODS: The effects of 238 natural chemicals on autonomous transactivity of LXRα were determined by the Gal4-TK-luciferase reporter system. The inclusion criteria for chemical selection was significant (P < 0.05) inhibition of autonomous transactivity of LXRα from three independent experiments. Transcript levels of mouse primary hepatocytes were measured by conventional or quantitative RT-PCR. Luciferase assay was used to assess synthetic or natural promoter activities of LXRα target genes. The effect of LicA on lipogenic activity was evaluated by measuring cellular triglycerides in mouse primary hepatocytes. The recruitment of RNA polymerase II to the LXR response element (LXRE) region was examined by chromatin immunoprecipitation. RESULTS: Among 238 natural compounds, LicA considerably inhibited the autonomous transactivity of LXRα and decreased the LXRα-dependent expression of SREBP-1c. LicA inhibited not only LXRα-dependent activation of the synthetic LXRE promoter but also that of the natural SREBP-1c promoter. As a consequence, LicA reduced the LXRα agonist-stimulated transcription of several lipogenic genes. Furthermore, LXRα-dependent hepatic lipid accumulation was repressed by LicA in mouse primary hepatocytes. Interestingly, the LXRα-dependent activation of ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1), other LXR target genes involved in reverse cholesterol transport (RCT), was not inhibited by LicA. LicA hindered the recruitment of RNA polymerase II to the LXRE of the SREBP-1c gene, but not of the ABCA1 gene. CONCLUSIONS: LicA is a selective inhibitor of LXRα, repressing lipogenic LXRα target genes but not RCT-related LXRα target genes.

9.
J Clin Invest ; 125(1): 183-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437875

RESUMO

Inflammation in response to excess low-density lipoproteins in the blood is an important driver of atherosclerosis development. Due to its ability to enhance ATP-binding cassette A1-dependent (ABCA1-dependent) reverse cholesterol transport (RCT), liver X receptor (LXR) is an attractive target for the treatment of atherosclerosis. However, LXR also upregulates the expression of sterol regulatory element-binding protein 1c (SREBP-1c), leading to increased hepatic triglyceride synthesis, an independent risk factor for atherosclerosis. Here, we developed a strategy to separate the favorable and unfavorable effects of LXR by exploiting the specificity of the coactivator thyroid hormone receptor-associated protein 80 (TRAP80). Using human hepatic cell lines, we determined that TRAP80 selectively promotes the transcription of SREBP-1c but not ABCA1. Adenovirus-mediated expression of shTRAP80 inhibited LXR-dependent SREBP-1c expression and RNA polymerase II recruitment to the LXR responsive element (LXRE) of SREBP-1c, but not to the LXRE of ABCA1. In murine models, liver-specific knockdown of TRAP80 ameliorated liver steatosis and hypertriglyceridemia induced by LXR activation and maintained RCT stimulation by the LXR ligand. Together, these data indicate that TRAP80 is a selective regulator of hepatic lipogenesis and is required for LXR-dependent SREBP-1c activation. Moreover, targeting the interaction between TRAP80 and LXR should facilitate the development of potential LXR agonists that effectively prevent atherosclerosis.


Assuntos
Lipogênese , Fígado/metabolismo , Complexo Mediador/fisiologia , Receptores Nucleares Órfãos/metabolismo , Animais , Transporte Biológico , Colesterol/metabolismo , Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Receptores X do Fígado , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ativação Transcricional
10.
Biochem J ; 447(3): 437-47, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22861055

RESUMO

ASC-2 (activating signal co-integrator-2, also known as AIB3 and NCoA6) is a transcriptional co-activator and regulates insulin secretion and ß-cell survival. The present study was performed to elucidate the role of ASC-2 in the regulation of insulin sensitivity. Although islet cells from 10-week-old ASC-2+/- mice secreted less insulin than wild-type islets, there was no significant difference in glucose tolerance between ASC-2+/- and wild-type mice. However, ASC-2+/- mice did show increased insulin sensitivity compared with wild-type mice in insulin tolerance tests. Consistently, the levels of phosphorylated Akt were higher in ASC-2+/- hepatocytes than in wild-type hepatocytes after insulin treatment. Moreover, decreases in phosphoenol pyruvate carboxykinase mRNA in refed mice were more prominent in ASC-2+/- livers than in wild-type livers. Interestingly, the expression levels of SOCS1 (suppressor of cytokine signalling 1) and SOCS3, well-known insulin signalling inhibitors, were decreased in ASC-2+/- hepatocytes and increased in ASC-2-overexpressing hepatocytes. Furthermore, ASC-2 was recruited to the promoter region of SOCS1 and potentiated the transcription by SREBP-1c (sterol-regulatory-element-binding protein-1c). This transcription-activating function of ASC-2 was diminished by mutations of SREBP-1c-binding sites in the SOCS1 promoter. Taken together, these results suggest that ASC-2 negatively affects hepatic insulin sensitivity, at least in part, through induction of the insulin signalling inhibitors SOCS1 and SOCS3.


Assuntos
Resistência à Insulina , Insulina/fisiologia , Fígado/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Animais , Sítios de Ligação , Jejum , Regulação da Expressão Gênica , Gluconeogênese , Hepatócitos/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Mutantes , Mutação , Coativadores de Receptor Nuclear/genética , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Transcrição Gênica
11.
Biochem Biophys Res Commun ; 408(4): 720-5, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21549685

RESUMO

Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.


Assuntos
Clusterina/genética , Glucose/metabolismo , Hepatócitos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ativação Transcricional , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Glucose/farmacologia , Hepatócitos/efeitos dos fármacos , Camundongos , Elementos de Resposta , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...