Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115912, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181562

RESUMO

In this study, we established a coculture model comprising human neuroblastoma SH-SY5Y cells and induced pluripotent stem cell-derived astrocytes, faithfully replicating the human brain environment for in vitro neurotoxicity assessment. We optimized the cell differentiation duration and cell ratios to obtain images conducive to neurite outgrowth evaluation. Subsequently, the neurotoxic effects in the coculture and monoculture of SH-SY5Y cells were confirmed using neurotoxic agents such as acrylamide (ACR) and hydrogen peroxide (H2O2). Disparities in the neurotoxic impacts of ACR and H2O2 within the coculture were mirrored in the expression of genes associated with early neuronal injury. Notably, the reduction in neurite outgrowth induced by neurotoxic agents revealed the coculture's lower sensitivity compared to monocultures. Furthermore, the coculture system exhibited distinct effects of test agents on nerve damage and manifested protective influences on nerve cells. The proposed methodology holds promise for large-scale chemical neurotoxicity screening through neurite change measurements. This in vitro coculture model, accounting for cell interactions, emerges as a valuable tool in toxicity testing, offering insights into the potential effects of chemicals within the human body.


Assuntos
Neuroblastoma , Síndromes Neurotóxicas , Humanos , Astrócitos , Técnicas de Cocultura , Peróxido de Hidrogênio , Acrilamida/toxicidade
2.
J Hazard Mater ; 465: 133146, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38064952

RESUMO

Poly(hexamethylenebicyanoguanide-hexamethylenediamine) hydrochloride (PHMB) is a biocide with a broad spectrum of antibacterial activity. Its use as a disinfectant and preservative in consumer products results in human exposure to PHMB. Toxicity studies on PHMB mainly focus on systemic toxicity or skin irritation; however, its effects on developmental neurotoxicity (DNT) and the underlying mechanisms are poorly understood. In this study, the DNT effects of PHMB were evaluated using IMR-32 and SH-SY5Y cell lines and zebrafish. In both cell lines, PHMB concentrations ≥ 10 µM reduced neurite outgrowth, and cytotoxicity was observed at concentrations up to 40 µM. PHMB regulated expression of neurodevelopmental genes and induced reactive oxygen species (ROS) production and mitochondrial dysfunction. Treatment with N-acetylcysteine reversed the toxic effects of PHMB. Toxicity tests on zebrafish embryos showed that PHMB reduced viability and heart rate and caused irregular hatching. PHMB concentrations of 1-4 µM reduced the width of the brain and spinal cord of transgenic zebrafish and attenuated myelination processes. Furthermore, PHMB modulated expression of neurodevelopmental genes in zebrafish and induced ROS accumulation. These results suggested that PHMB exerted DNT effects in vitro and in vivo through a ROS-dependent mechanism, highlighting the risk of PHMB exposure.


Assuntos
Diaminas , Desinfetantes , Neuroblastoma , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Neuroblastoma/metabolismo , Estresse Oxidativo , Desinfetantes/toxicidade , Embrião não Mamífero
3.
Sci Rep ; 13(1): 23060, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155222

RESUMO

Previous studies on copper pyrithione (CPT) and zinc pyrithione (ZPT) as antifouling agents have mainly focused on marine organisms. Even though CPT and ZPT pose a risk of human exposure, their neurotoxic effects remain to be elucidated. Therefore, in this study, the cytotoxicity and neurotoxicity of CPT and ZPT were evaluated after the exposure of human SH-SY5Y/astrocytic co-cultured cells to them. The results showed that, in a co-culture model, CPT and ZPT induced cytotoxicity in a dose-dependent manner (~ 400 nM). Exposure to CPT and ZPT suppressed all parameters in the neurite outgrowth assays, including neurite length. In particular, exposure led to neurotoxicity at concentrations with low or no cytotoxicity (~ 200 nM). It also downregulated the expression of genes involved in neurodevelopment and maturation and upregulated astrocyte markers. Moreover, CPT and ZPT induced mitochondrial dysfunction and promoted the generation of reactive oxygen species. Notably, N-acetylcysteine treatment showed neuroprotective effects against CPT- and ZPT-mediated toxicity. We concluded that oxidative stress was the major mechanism underlying CPT- and ZPT-induced toxicity in the co-cultured cells.


Assuntos
Neuroblastoma , Compostos Organometálicos , Humanos , Astrócitos/metabolismo , Técnicas de Cocultura , Estresse Oxidativo , Compostos Organometálicos/toxicidade , Compostos Organometálicos/metabolismo , Células Cultivadas
4.
Toxicol In Vitro ; 84: 105449, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35872077

RESUMO

Biocidal disinfectants (BDs) that kill microorganisms or pathogens are widely used in hospitals and other healthcare fields. Recently, the use of BDs has rapidly increased as personal hygiene has become more apparent owing to the pandemic, namely the coronavirus outbreak. Despite frequent exposure to BDs, toxicity data of their potential neurotoxicity (NT) are lacking. In this study, a human-derived SH-SY5Y/astrocyte was used as a co-culture model to evaluate the chemical effects of BDs. Automated high-content screening was used to evaluate the potential NT of BDs through neurite growth analysis. A set of 12 BD substances classified from previous reports were tested. Our study confirms the potential NT of benzalkonium chloride (BKC) and provides the first evidence of the potential NT of poly(hexamethylenebicyanoguanide-hexamethylenediamine) hydrochloride (PHMB). BKC and PHMB showed significant NT at concentrations without cytotoxicity. This test system for analyzing the potential NT of BDs may be useful in early screening studies for NT prior to starting in vivo studies.


Assuntos
Desinfetantes , Neuroblastoma , Síndromes Neurotóxicas , Astrócitos , Compostos de Benzalcônio/toxicidade , Técnicas de Cocultura , Desinfetantes/toxicidade , Humanos , Neurônios
5.
Ecotoxicol Environ Saf ; 242: 113891, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868176

RESUMO

The genotoxicity, development toxicity, carcinogenicity, and acute or chronic toxic effects of glutaraldehyde (GA), particularly during occupational exposure through its use as a fixative, disinfectant, and preservative, are well-documented but its effects on neurotoxicity have not been investigated. We performed in vitro and in vivo studies to examine the developmental neurotoxicity (DNT) of GA. Neurite outgrowth was examined in an in vitro co-culture model consisting of SH-SY5Y human neuroblastoma cells and human astrocytes. Cell Counting Kit-8, lactate dehydrogenase assay, and high-content screening revealed that GA significantly inhibited neurite outgrowth at non-cytotoxic concentration. Further studies showed that GA upregulated the mRNA expression of the astrocyte markers GFAP and S100ß and downregulated the expression of the neurodevelopmental genes Nestin, ßIII-tubulin, GAP43, and MAP2. Furthermore, in vivo zebrafish embryo toxicity tests explored the effects of GA on neural morphogenesis. GA adversely affected the early development of zebrafish embryos, resulting in decreased survival, irregular hatching, and reduced heart rate in a time- and concentration-dependent manner. Furthermore, the width of the brain and spinal cord was reduced, and the myelination of Schwann cells and oligodendrocytes was decreased by GA in transgenic zebrafish lines. These data suggest that GAs have potential DNT in vitro and in vivo, highlighting the need for caution regarding the neurotoxicity of GA.


Assuntos
Neuroblastoma , Síndromes Neurotóxicas , Animais , Astrócitos , Células Cultivadas , Técnicas de Cocultura , Glutaral/farmacologia , Humanos , Neurônios , Peixe-Zebra
6.
Front Immunol ; 12: 769088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868027

RESUMO

Vaccine adjuvants from natural resources have been utilized for enhancing vaccine efficacy against infectious diseases. This study examined the potential use of catechins, polyphenolic materials derived from green tea, as adjuvants for subunit and inactivated vaccines. Previously, catechins have been documented to have irreversible virucidal function, with the possible applicability in the inactivated viral vaccine platform. In a mouse model, the coadministration of epigallocatechin-3-gallate (EGCG) with influenza hemagglutinin (HA) antigens induced high levels of neutralizing antibodies, comparable to that induced by alum, providing complete protection against the lethal challenge. Adjuvant effects were observed for all types of HA antigens, including recombinant full-length HA and HA1 globular domain, and egg-derived inactivated split influenza vaccines. The combination of alum and EGCG further increased neutralizing (NT) antibody titers with the corresponding hemagglutination inhibition (HI) titers, demonstrating a dose-sparing effect. Remarkably, EGCG induced immunoglobulin isotype switching from IgG1 to IgG2a (approximately >64-700 fold increase), exerting a more balanced TH1/TH2 response compared to alum. The upregulation of IgG2a correlated with significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) function (approximately 14 fold increase), providing a potent effector-mediated protection in addition to NT and HI. As the first report on a novel class of vaccine adjuvants with built-in virucidal activities, the results of this study will help improve the efficacy and safety of vaccines for pandemic preparedness.


Assuntos
Catequina/análogos & derivados , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes de Vacinas/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Catequina/administração & dosagem , Catequina/imunologia , Cães , Sinergismo Farmacológico , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia
7.
J Inorg Biochem ; 223: 111524, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218127

RESUMO

Iodosylbenzene (PhIO) and its derivatives have attracted significant attention due to their various applications in organic synthesis and biomimetic studies. For example, PhIO has been extensively used for generating high-valent metal-oxo species that have been regarded as key intermediates in diverse oxidative reactions in biological system. However, recent studies have shown that metal-iodosylbenzene adduct, known as a precursor of metal-oxo species, plays an important role in transition metal-catalyzed oxidation reactions. During last few decades, extensive investigations have been conducted on the synthesis and reactivity studies of metal-iodosylbenzene adducts with early and middle transition metals including manganese, iron, cobalt. Nevertheless, metal-iodosylbenzene adducts with late transition metals such as nickel, copper and zinc, still remains elusive. Herein, we report a novel copper(II)-iodosylbenzene adduct bearing a linear ligand composed of two pyridine rings and an ethoxyethanol side-chain, [Cu(OIPh)(HN3O2)]2+ (1). The copper(II)-iodosylbenzene adduct was characterized by several spectroscopic methods including UV-vis spectroscopy, electrospray ionization mass spectrometer (ESI MS), and electron paramagnetic resonance (EPR) combined with theoretical calculations. Interestingly, 1 can carry out the catalytic sulfoxidation reaction. In sulfoxidation reaction with thioanisole under catalytic reaction condition, not only two-electron but also four-electron oxidized products such sulfoxide and sulfone were yielded, respectively. However, 1 was not an efficient oxidant towards CH bond activation and epoxidation reactions due to the steric hindrance created by the intramolecular H-bonding interaction between HN3O2 ligand and iodosylbenzene moiety.


Assuntos
Complexos de Coordenação/química , Iodobenzenos/química , Catálise , Complexos de Coordenação/síntese química , Cobre/química , Cicloexenos/química , Teoria da Densidade Funcional , Iodobenzenos/síntese química , Modelos Químicos , Oxirredução , Estireno/química , Sulfetos/química
8.
Chemosphere ; 277: 130330, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33780678

RESUMO

Biocidal products are broadly used in homes and industries. However, the safety of biocidal active substances (BASs) is not yet fully understood. In particular, the neurotoxic action of BASs needs to be studied as diverse epidemiological studies have reported associations between exposure to BASs and neural diseases. In this study, we developed in silico models to predict the blood-brain barrier (BBB) permeation of organic and inorganic BASs. Due to a lack of BBB data for BASs, the chemical space of BASs and BBB dataset were compared in order to select BBB data that were structurally similar to BASs. In silico models to predict log-scaled BBB penetration were developed using support vector regression for organic BASs and multiple linear regression for inorganic BASs. The model for organic BASs was developed with 231 compounds (training set: 153 and test set: 78) and achieved good prediction accuracy on an external test set (R2 = 0.64), and the model outperformed the model for pharmaceuticals. The model for inorganic BASs was developed with 11 compounds (R2 = 0.51). Applicability domain (AD) analysis of the models clarified molecular structures reliably predicted by the models. Therefore, the models developed in this study can be used for predicting BBB permeable BASs in human. These models were developed according to the Quantitative Structure-Activity Relationship validation principles proposed by the Organization for Economic Cooperation and Development.


Assuntos
Barreira Hematoencefálica , Relação Quantitativa Estrutura-Atividade , Transporte Biológico , Simulação por Computador , Humanos , Permeabilidade
9.
J Microbiol Biotechnol ; 31(4): 559-569, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33746190

RESUMO

As one of the major types of lung cancer, non-small cell lung cancer (NSCLC) accounts for the majority of cancer-related deaths worldwide. Treatments for NSCLC includes surgery, chemotherapy, and targeted therapy. Among the targeted therapies, resistance to inhibitors of the epidermal growth factor receptor (EGFR) is common and remains a problem to be solved. MET (hepatocyte growth factor receptor) amplification is one of the major causes of EGFR-tyrosine kinase inhibitor (TKI) resistance. Therefore, there exists a need to find new and more efficacious therapies. Deoxypodophyllotoxin (DPT) extracted from Anthriscus sylvestris roots exhibits various pharmacological activities including anti-inflammation and anti-cancer effects. In this study we sought to determine the anti-cancer effects of DPT on HCC827GR cells, which are resistant to gefitinib (EGFR-TKI) due to regulation of EGFR and MET and their related signaling pathways. To identify the direct binding of DPT to EGFR and MET, we performed pull-down, ATP-binding, and kinase assays. DPT exhibited competitive binding with ATP against the network kinases EGFR and MET and reduced their activities. Also, DPT suppressed the expression of p-EGFR and p-MET as well as their downstreat proteins p-ErbB3, p-AKT, and p-ERK. The treatment of HCC827GR cells with DPT induced high ROS generation that led to endoplasmic-reticulum stress. Accordingly, loss of mitochondrial membrane potential and apoptosis by multi-caspase activation were observed. In conclusion, these results demonstrate the apoptotic effects of DPT on HCC827GR cells and signify the potential of DPT to serve as an adjuvant anti-cancer drug by simultaneously inhibiting EGFR and MET.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/patologia , Podofilotoxina/análogos & derivados , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Antineoplásicos/farmacologia , Apiaceae/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Podofilotoxina/farmacologia , Transdução de Sinais
10.
Phytomedicine ; 80: 153355, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33039730

RESUMO

BACKGROUND: Lung cancer has the highest incidence and cancer-related mortality of all cancers worldwide. Its treatment is focused on molecular targeted therapy. c-MET plays an important role in the development and metastasis of various human cancers and has been identified as an attractive potential anti-cancer target. Podophyllotoxin (PPT), an aryltetralin lignan isolated from the rhizomes of Podophyllum species, has several pharmacological activities that include anti-viral and anti-cancer effects. However, the mechanism of the anti-cancer effects of PPT on gefitinib-sensitive (HCC827) or -resistant (MET-amplified HCC827GR) non-small cell lung cancer (NSCLC) cells remains unexplored. PURPOSE: In the present study, we investigated the underlying mechanisms of PPT-induced apoptosis in NSCLC cells and found that the inhibition of c-MET kinase activity contributed to PPT-induced cell death. METHODS: The regulation of c-MET by PPT was examined by pull-down assay, ATP-competitive binding assay, kinase activity assay, molecular docking simulation, and Western blot analysis. The cell growth inhibitory effects of PPT on NSCLC cells were assessed using the MTT assay, soft agar assay, and flow cytometry analysis. RESULTS: PPT could directly interact with c-MET and inhibit kinase activity, which further induced the apoptosis of HCC827GR cells. In contrast, PPT did not significantly affect EGFR kinase activity. PPT significantly inhibited the cell viability of HCC827GR cells, whereas the PPT-treated HCC827 cells showed a cell viability of more than 80%. PPT dose-dependently induced G2/M cell cycle arrest, as shown by the downregulation of cyclin B1 and cdc2, and upregulation of p27 expression in HCC827GR cells. Furthermore, PPT treatment induced Bad expression and downregulation of Mcl-1, survivin, and Bcl-xl expression, subsequently activating multi-caspases. PPT thereby induced caspase-dependent apoptosis in HCC827GR cells. CONCLUSION: These results suggest the potential of PPT as a c-MET inhibitor to overcome tyrosine kinase inhibitor resistance in lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Podofilotoxina/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Gefitinibe/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Podofilotoxina/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/metabolismo
11.
J Plast Reconstr Aesthet Surg ; 73(10): 1834-1844, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32536464

RESUMO

BACKGROUND: Few studies have evaluated clinical outcomes of novice surgeons trained in a microsurgical training program. Herein, we describe successful free flap reconstructions performed by trainees who completed a structured microsurgical training program. METHODS: The Microsurgical Skills Training Course, a laboratory-based structured microsurgical training program, was developed and used for microsurgical training. Three trainees (postgraduate years 6 and 7) who completed the training course during residency were assigned to perform free flap reconstructions between March 2015 and February 2019. Clinical outcomes of free flap reconstruction were assessed. A retrospective propensity-score-matched analysis was performed between the trainee and expert microsurgeon groups. RESULTS: A total of 161 patients were included. Of them, 67 (25 of the trainee group and 42 of the expert group) were propensity score-matched. No flap failure developed in either matched group (p>0.999). Rates of overall complications, partial flap loss, and emergent reoperation due to vascular compromise were not significantly different between the two groups (p=0.384, p=0.525, and p=0.322, respectively), whereas those of donor complications and overall operation time were significantly higher in the trainee group than the expert group (p=0.002 and p<0.001, respectively). CONCLUSION: The use of a structured microvascular training program in qualified teaching hospitals may help trainees achieve independence as microsurgeons and favorable clinical outcomes.


Assuntos
Competência Clínica , Retalhos de Tecido Biológico , Microcirurgia/educação , Microcirurgia/normas , Procedimentos de Cirurgia Plástica/educação , Procedimentos de Cirurgia Plástica/normas , Hospitais de Ensino , Humanos , Microcirurgia/estatística & dados numéricos , Complicações Pós-Operatórias/epidemiologia , Pontuação de Propensão , Procedimentos de Cirurgia Plástica/métodos , Procedimentos de Cirurgia Plástica/estatística & dados numéricos , Estudos Retrospectivos , Resultado do Tratamento
12.
Biotechnol Bioeng ; 117(7): 1990-2007, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32297972

RESUMO

High-quality antibody (Ab) production depends on the availability of immunologically relevant antigens. We present a potentially universal platform for generating soluble antigens from bacterial hosts, tailored to immunized animals for Ab production. A novel RNA-dependent chaperone, in which the target antigen is genetically fused with an RNA-interacting domain (RID) docking tag derived from the immunized host, promotes the solubility and robust folding of the target antigen. We selected the N-terminal tRNA-binding domain of lysyl-tRNA synthetase (LysRS) as the RID for fusion with viral proteins and demonstrated the expression of the RID fusion proteins in their soluble and native conformations; immunization predominantly elicited Ab responses to the target antigen, whereas the "self" RID tag remained nonimmunogenic. Differential immunogenicity of the fusion proteins greatly enriched and simplified the screening of hybridoma clones of monoclonal antibodies (mAbs), enabling specific and sensitive serodiagnosis of MERS-CoV infection. Moreover, mAbs against the consensus influenza hemagglutinin stalk domain enabled a novel assay for trivalent seasonal influenza vaccines. The Fc-mediated effector function was demonstrated, which could be harnessed for the design of next-generation "universal" influenza vaccines. The nonimmunogenic built-in antigen folding module tailored to a repertoire of immunized animal hosts will drive immunochemical diagnostics, therapeutics, and designer vaccines.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Antígenos Virais/química , Infecções por Coronavirus/diagnóstico , Hibridomas/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Chaperonas Moleculares , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Antígenos Virais/genética , Antígenos Virais/imunologia , Infecções por Coronavirus/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunização , Vacinas contra Influenza , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Camundongos , Camundongos Endogâmicos BALB C , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Testes Sorológicos , Solubilidade
13.
Phytother Res ; 34(8): 2032-2043, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32144852

RESUMO

Esophageal cancer (EC) is one of the leading causes to cancer death in the worldwide and major population of EC is esophageal squamous cell carcinoma (ESCC). Still, ESCC-targeted therapy has not been covered yet. In the present study we have identified that Licochalcone B (Lico B) inhibited the ESCC growth by directly blocking the Janus kinase (JAK) 2 activity and its downstream signaling pathway. Lico B suppressed KYSE450 and KYSE510 ESCC cell growth, arrested cell cycle at G2/M phase and induced apoptosis. Direct target of Lico B was identified by kinase assay and verified with in vitro and ex vivo binding. Computational docking model predicted for Lico B interaction to ATP-binding pocket of JAK2. Furthermore, treatment of JAK2 clinical medicine AZD1480 to ESCC cells showed similar tendency with Lico B. Thus, JAK2 downstream signaling proteins phosphorylation of STAT3 at Y705 and S727 as well as STAT3 target protein Mcl-1 expression was decreased with treatment of Lico B. Our results suggest that Lico B inhibits ESCC cell growth, arrests cell cycle and induces apoptosis, revealing the underlying mechanism involved in JAK2/STAT3 signaling pathways after Lico B treatment. It might provide potential role of Lico B in the treatment of ESCC.


Assuntos
Chalconas/uso terapêutico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Apoptose , Linhagem Celular Tumoral , Chalconas/farmacologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos
14.
Biomolecules ; 10(2)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070026

RESUMO

Licochalcone D (LCD), a flavonoid isolated from a Chinese medicinal plant Glycyrrhizainflata, has a variety of pharmacological activities. However, the anti-cancer effects of LCD on non-small cell lung cancer (NSCLC) have not been investigated yet. The amplification of MET (hepatocyte growth factor receptor) compensates for the inhibition of epidermal growth factor receptor (EGFR) activity due to tyrosine kinase inhibitor (TKI), leading to TKI resistance. Therefore, EGFR and MET can be attractive targets for lung cancer. We investigated the anti-proliferative and apoptotic effects of LCD in lung cancer cells HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, pull-down/kinase assay, cell cycle analysis, Annexin-V/7-ADD staining, reactive oxygen species (ROS) assay, mitochondrial membrane potential (MMP) assay, multi-caspase assay, and Western blot analysis. The results showed that LCD inhibited phosphorylation and the kinase activity of EGFR and MET. In addition, the predicted pose of LCD was competitively located at the ATP binding site. LCD suppressed lung cancer cells growth by blocking cell cycle progression at the G2/M transition and inducing apoptosis. LCD also induced caspases activation and poly (ADP-ribose) polymerase (PARP) cleavage, thus displaying features of apoptotic signals. These results provide evidence that LCD has anti-tumor effects by inhibiting EGFR and MET activities and inducing ROS-dependent apoptosis in NSCLC, suggesting that LCD has the potential to treat lung cancer.


Assuntos
Chalconas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
J Chemother ; 32(3): 132-143, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32009586

RESUMO

Along with changes in dietary habits and lifestyle, the incidence of esophageal cancer is increasing around the world. Since chemotherapy for esophageal cancer has significant side effects, phytochemicals have attracted attention as an alternative medicine. Licochalcone C (LCC) is a flavonoid compound extracted from Licorice, with a variety of clinical uses including anti-cancer, anti-inflammatory and anti-oxidant effects. Treatment with LCC for 48 h significantly decreased cell viability of esophageal squamous cell carcinoma (ESCC) cells in a dose- and time-dependent manner with IC50 values of 28 µM (KYSE 30), 36 µM (KYSE 70), 19 µM (KYSE 410), 28 µM (KYSE 450) and 26 µM (KYSE 510). LCC induced G1 arrest accompanied by decreased cyclin D1 expression and an increase in the levels of p21 and p27. LCC increased the levels of intracellular ROS, cytochrome C release, and multi-caspase activity, and decreased mitochondrial membrane potential. LCC induced the protein expression of ER stress markers (GRP78 and CHOP) and phosphorylation JNK, c-Jun and p38. We investigated the expression of pro-apoptotic and anti-apoptotic proteins to elucidate the mechanism of apoptosis. Our findings contribute to the understanding of apoptosis mechanism underlying LCC in ESCC cells and provide new insights into the potential clinical opportunities of LCC for ESCC treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Fase G1/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Caspases/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalconas/administração & dosagem , Citocromos c/biossíntese , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio , Fatores de Tempo
16.
Phytother Res ; 34(2): 388-400, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31698509

RESUMO

Patients with non-small-cell lung cancer (NSCLC) containing epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to tyrosine kinase inhibitor gefitinib; however, the treatment is less effective over time. Gefitinib resistance mechanisms include MET gene amplification. A therapeutic strategy targeting MET as well as EGFR can overcome resistance to gefitinib. In the present study we identified Echinatin (Ecn), a characteristic chalcone in licorice, which inhibited both EGFR and MET and strongly altered NSCLC cell growth. The antitumor efficacy of Ecn against gefitinib-sensitive or -resistant NSCLC cells with EGFR mutations and MET amplification was confirmed by suppressing cell proliferation and anchorage-independent colony growth. During the targeting of EGFR and MET, Ecn significantly blocked the kinase activity, which was validated with competitive ATP binding. Inhibition of EGFR and MET by Ecn decreases the phosphorylation of downstream target proteins ERBB3, AKT and ERK compared with total protein expression or control. Ecn induced the G2/M cell cycle arrest, and apoptosis via the intrinsic pathway of caspase-dependent activation. Ecn induced ROS production and GRP78, CHOP, DR5 and DR4 expression as well as depolarized the mitochondria membrane potential. Therefore, our results suggest that Ecn is a promising therapeutic agent in NSCLC therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Chalconas/farmacologia , Gefitinibe/farmacologia , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Chaperona BiP do Retículo Endoplasmático , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Raízes de Plantas/química , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met/genética , Quinazolinas/farmacologia
17.
Cell Biochem Biophys ; 78(1): 65-76, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31707583

RESUMO

Esophageal cancer is one of the malignant cancers with a low 5-year survival rate. Licochalcone (LC) H, a chemically synthesized substance, is a regioisomer of LCC extracted from licorice. The purpose of this study was to determine whether LCH might have anticancer effect on human esophageal squamous cell carcinoma (ESCC) cell lines via apoptosis signaling pathway. After 48 h of treatment, IC50 of LCH in KYSE 30, KYSE 70, KYSE 410, KYSE 450, and KYSE 510 cells were 15, 14, 18, 15, and 16 µM, respectively. This study demonstrated that LCH potently suppressed proliferation of ESCC cells in a concentration- and time-dependent manner. LCH triggered G2/M-phase arrest by modulating expression levels of cdc2, cyclin B1, p21, and p27. LCH also induced apoptosis of ESCC cells through reactive oxygen species-mediated endoplasmic reticulum (ER) stress via JNK/p38 activation pathways. The anticancer effect of LCH was associated with ER stress and mitochondrial dysfunction. It also affected protein levels of Mcl-1, tBid, Bax, Bcl-2, cytochrome c, Apaf-1, PARP, cleaved-PARP, and ER stress-related proteins (GRP78 and CHOP). Our findings provide the first demonstration that LCH has anticancer effect on ESCC. Thus, LCH might have potential for preventing and/or treating human ESCC.


Assuntos
Apoptose , Chalconas/química , Glycyrrhiza/química , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/isolamento & purificação , Chalconas/farmacologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glycyrrhiza/metabolismo , Humanos , Janus Quinases/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Molecules ; 24(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717502

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a poor prognostic cancer with a low five-year survival rate. Echinatin (Ech) is a retrochalone from licorice. It has been used as a herbal medicine due to its anti-inflammatory and anti-oxidative effects. However, its anticancer activity or underlying mechanism has not been elucidated yet. Thus, the objective of this study was to investigate the anti-tumor activity of Ech on ESCC by inducing ROS and ER stress dependent apoptosis. Ech inhibited ESCC cell growth in anchorage-dependent and independent analysis. Treatment with Ech induced G2/M phase of cell cycle and apoptosis of ESCC cells. It also regulated their related protein markers including p21, p27, cyclin B1, and cdc2. Ech also led to phosphorylation of JNK and p38. Regarding ROS and ER stress formation associated with apoptosis, we found that Ech increased ROS production, whereas its increase was diminished by NAC treatment. In addition, ER stress proteins were induced by treatment with Ech. Moreover, Ech enhanced MMP dysfunction and caspases activity. Furthermore, it regulated related biomarkers. Taken together, our results suggest that Ech can induce apoptosis in human ESCC cells via ROS/ER stress generation and p38 MAPK/JNK activation.


Assuntos
Apoptose/genética , Chalconas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Chem Commun (Camb) ; 55(84): 12659-12662, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31584045

RESUMO

Herein, a water-soluble molecular copper complex was investigated as a catalyst for O2 reduction in both water and an organic solvent. Although the quasi-stoichiometric oxygen reduction reaction (ORR) for the formation of H2O2 was conducted in an organic solvent and revealed mechanistic insights into the ORR, the electrocatalytic production of H2O2 was achieved in an aqueous medium.

20.
Inorg Chem ; 58(19): 12964-12974, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31524386

RESUMO

To explore the reactivity of copper-alkylperoxo species enabled by the heterolytic peroxide activation, room-temperature stable mononuclear nonheme copper(II)-alkylperoxo complexes bearing a N-(2-ethoxyethanol)-bis(2-picolyl)amine ligand (HN3O2), [CuII(OOR)(HN3O2)]+ (R = cumyl or tBu), were synthesized and spectroscopically characterized. A combined experimental and computational investigation on the reactivity and reaction mechanisms in the phosphorus oxidation, C-H bond activation, and aldehyde deformylation reactions by the copper(II)-alkylperoxo complexes has been conducted. DFT-optimized structures suggested that a hydrogen bonding interaction exists between the ethoxyethanol backbone of the HN3O2 ligand and either the proximal or distal oxygen atom of the alkylperoxide moiety, and this interaction consequently results in the enhanced stability of the copper(II)-alkylperoxo species. In the phosphorus oxidation reaction, both experimental and computational results indicated that a phosphine-triggered heterolytic O-O bond cleavage occurred to yield phosphine oxide and alcohol products. DFT calculations suggested that (i) the H-bonding between the ethoxyethanol backbone and distal oxygen of the alkylperoxide moiety and (ii) the phosphine binding to the proximal oxygen of the alkylperoxide moiety engendered the heterolytic peroxide activation. In the C-H bond activation reactions, temperature-dependent reactivity of the copper(II)-alkylperoxo complexes was observed, and a relatively strong activation energy of 95 kcal mol-1 was required to promote the homolytic peroxide activation. A rate-limiting hydrogen atom abstraction reaction of xanthene by the putative copper(II)-oxyl radical resulted in the formation of the dimeric copper product and the substrate radical that further underwent autocatalytic oxidation reactions to form an oxygen incorporated product. Finally, amphoteric reactivity of copper(II)-alkylperoxo complexes has been assessed by conducting kinetic studies and product analysis of the aldehyde deformylation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...