Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Phys ; 126(2): 79-95, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948057

RESUMO

ABSTRACT: Following unforeseen exposure to radiation, quick dose determination is essential to prioritize potential patients that require immediate medical care. L-band electron paramagnetic resonance tooth dosimetry can be efficiently used for rapid triage as this poses no harm to the human incisor, although geometric variations among human teeth may hinder accurate dose estimation. Consequently, we propose a practical geometric correction method using a mobile phone camera. Donated human incisors were irradiated with calibrated 6-MV photon beam irradiation, and dose-response curves were developed by irradiation with a predetermined dose using custom-made poly(methyl methacrylate) slab phantoms. Three radiation treatment plans for incisors were selected and altered to suit the head phantom. The mean doses on tooth structures were calculated using a commercial treatment planning system, and the electron paramagnetic resonance signals of the incisors were measured. The enamel area was computed from camera-acquired tooth images. The relative standard uncertainty was rigorously estimated both with and without geometric correction. The effects on the electron paramagnetic resonance signal caused by axial and rotational movements of tooth samples were evaluated through finite element analysis. The mean absolute deviations of mean doses both with and without geometric correction showed marginal improvement. The average relative differences without and with geometric correction significantly decreased from 21.0% to 16.8% (p = 0.01). The geometric correction method shows potential in improving dose precision measurement with minimal delay. Furthermore, our findings demonstrated the viability of using treatment planning system doses in dose estimation for L-band electron paramagnetic resonance tooth dosimetry.


Assuntos
Radiometria , Dente , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radiometria/métodos , Dente/efeitos da radiação , Triagem , Processamento de Imagem Assistida por Computador
2.
Nat Commun ; 14(1): 4870, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573340

RESUMO

An ideal holographic camera measures the amplitude and phase of the light field so that the focus can be numerically adjusted after the acquisition, and depth information about an imaged object can be deduced. The performance of holographic cameras based on reference-assisted holography is significantly limited owing to their vulnerability to vibration and complex optical configurations. Non-interferometric holographic cameras can resolve these issues. However, existing methods require constraints on an object or measurement of multiple-intensity images. In this paper, we present a holographic image sensor that reconstructs the complex amplitude of scattered light from a single-intensity image using reciprocal diffractive imaging. We experimentally demonstrate holographic imaging of three-dimensional diffusive objects and suggest its potential applications by imaging a variety of samples under both static and dynamic conditions.

3.
Health Phys ; 125(5): 352-361, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37565831

RESUMO

ABSTRACT: We aim to develop a dose assessment method compensating for quality factors (Q factor) observed during in vivo EPR tooth dosimetry. A pseudo-in-vivo phantom made of tissue-equivalent material was equipped with one each of four extracted human central incisors. A range of Q factors was measured at tooth-depths of -2, 0, and 2 mm in the pseudo-in-vivo phantom. In addition, in vivo Q factors were measured from nine human volunteers. For the dose-response data, the above four sample teeth were irradiated at 0, 1, 2, 5, and 10 Gy, and the radiation-induced signals were measured at the same tooth-depths using an in vivo EPR tooth dosimetry system. To validate the method, the signals of two post-radiotherapy patients and three unirradiated volunteers were measured using the same system. The interquartile range of the Q factors measured in the pseudo-in-vivo phantom covered that observed from the human volunteers, which implied that the phantom represented the Q factor distribution of in vivo conditions. The dosimetric sensitivities and background signals were decreased as increasing the tooth-depth in the phantom due to the decrease in Q factors. By compensating for Q factors, the diverged dose-response data due to various Q factors were converged to improve the dosimetric accuracy in terms of the standard error of inverse prediction (SEIP). The Q factors of patient 1 and patient 2 were 98 and 64, respectively, while the three volunteers were 100, 92, and 99. The assessed doses of patient 1 and patient 2 were 2.73 and 12.53 Gy, respectively, while expecting 4.43 and 13.29 Gy, respectively. The assessed doses of the unirradiated volunteers were 0.53, 0.50, and - 0.22 Gy. We demonstrated that the suggested Q factor compensation could mitigate the uncertainty induced by the variation of Q factors.


Assuntos
Radiometria , Dente , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radiometria/métodos , Eficiência Biológica Relativa
4.
J Magn Reson ; 353: 107520, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459701

RESUMO

This article describes the design process for a motion compensation system that can suppress the spectral distortion caused by human motion and breathing during in-vivo electron paramagnetic resonance (EPR) spectroscopy on an intact incisor. The developed system consists of two elements: an electronically controlled tunable resonator and an automatic control circuit (ACC). The resonator can modify the resonant frequency and impedance by tuning and matching the voltage, while the ACC can generate a feedback signal using phase-sensitive detection (PSD). The signal is transferred into the resonator to maintain the critical coupling state. The tunable frequency range of the resonator was measured at over 10 MHz, offering approximately eight times the required range. The bandwidth of the resonator fluctuated in a negligible range (0.14% relative standard error) following the resonant frequency. With the feedback signal on, in-vivo EPR measurements were demonstrated to be a stable baseline with 35% higher signal-to-noise ratio (SNR). When one incisor sample was irradiated by an X-ray instrument, the EPR signal responses to the absorbed doses of 0-10 Gy exhibited high linearity (R2 = 0.994). In addition, the standard error of inverse prediction was estimated to be 0.35 Gy. The developed system achieved a discrimination ability of 2 Gy, which is required for triage in large-scale radiation accidents. Moreover, the compensation is fully automated, meaning that the system can be operated with simple training in an emergency.


Assuntos
Radiometria , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Razão Sinal-Ruído , Radiometria/métodos
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122026, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36395614

RESUMO

Malaria is a life-threatening infectious disease caused by parasites of the genus Plasmodium. Understanding the biological features of various parasite forms is important for the optical diagnosis and defining pathological states, which are often constrained by the lack of ambient visualization approaches. Here, we employ a label-free tomographic technique to visualize the host red blood cell (RBC) remodeling process and quantify changes in biochemical properties arising from parasitization. Through this, we provide a quantitative body of information pertaining to the influence of host cell environment on growth, survival, and replication of P. falciparum and P. vivax in their respective host cells: mature erythrocytes and young reticulocytes. These exquisite three-dimensional measurements of infected red cells demonstrats the potential of evolving 3D imaging to advance our understanding of Plasmodium biology and host-parasite interactions.


Assuntos
Malária , Plasmodium , Humanos , Malária/parasitologia , Eritrócitos/parasitologia , Processamento de Imagem Assistida por Computador , Tomografia
6.
Parasit Vectors ; 15(1): 434, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397133

RESUMO

BACKGROUND: Babesia is an intraerythrocytic parasite often misdiagnosed as a malaria parasite, leading to inappropriate treatment of the disease especially in co-endemic areas. In recent years, optical diffraction tomography (ODT) has shown great potential in the field of pathogen detection by quantification of three-dimensional (3D) imaging tomograms. The 3D imaging of biological cells is crucial to investigate and provide valuable information about the mechanisms behind the pathophysiology of cells and tissues. METHODS: The early ring stage of P. falciparum were obtained from stored stock of infected RBCs and of B. microti were obtained from infected patients during diagnosis. The ODT technique was applied to analyze and characterize detailed differences between P. falciparum and B. microti ring stage at the single cell level. Based on 3D quantitative information, accurate measurement was performed of morphological, biochemical, and biophysical parameters. RESULTS: Accurate measurements of morphological parameters indicated that the host cell surface area at the ring stage in B. microti was significantly smaller (140.2 ± 17.1 µm2) than that in P. falciparum (159.0 ± 15.2 µm2), and sphericities showed higher levels in B. microti-parasitized cells (0.66 ± 0.05) than in P. falciparum (0.60 ± 0.04). Based on biochemical parameters, host cell hemoglobin level was significantly higher and membrane fluctuations were respectively more active in P. falciparum-infected cells (30.25 ± 2.96 pg; 141.3 ± 24.68 nm) than in B. microti (27.28 ± 3.52 pg; 110.1 ± 38.83 nm). The result indicates that P. falciparum more actively altered host RBCs than B. microti. CONCLUSION: Although P. falciparum and B. microti often show confusable characteristics under the microscope, and the actual three-dimensional properties are different. These differences could be used in differential clinical diagnosis of erythrocytes infected with B. microti and P. falciparum.


Assuntos
Babesia microti , Babesia , Malária Falciparum , Humanos , Plasmodium falciparum/fisiologia , Eritrócitos/parasitologia
7.
Sci Rep ; 11(1): 14916, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290293

RESUMO

Absorption spectroscopy is widely used to detect samples with spectral specificity. Here, we propose and demonstrate a method for enhancing the sensitivity of absorption spectroscopy. Exploiting multiple light scattering generated by a boron nitride (h-BN) scattering cavity, the optical path lengths of light inside a diffusive reflective cavity are significantly increased, resulting in more than ten times enhancement of sensitivity in absorption spectroscopy. We demonstrate highly sensitive spectral measurements of low concentrations of malachite green and crystal violet aqueous solutions. Because this method only requires the addition of a scattering cavity to existing absorption spectroscopy, it is expected to enable immediate and widespread applications in various fields, from analytical chemistry to environmental sciences.

8.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312231

RESUMO

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters that are intracellularly accumulated as distinct insoluble granules by various microorganisms. PHAs have attracted much attention as sustainable substitutes for petroleum-based plastics. However, the formation of PHA granules and their characteristics, such as localization, volume, weight, and density of granules, in an individual live bacterial cell are not well understood. Here, we report the results of three-dimensional (3D) quantitative label-free analysis of PHA granules in individual live bacterial cells through measuring the refractive index distributions by optical diffraction tomography (ODT). The formation and growth of PHA granules in the cells of Cupriavidus necator, the best-studied native PHA producer, and recombinant Escherichia coli harboring C. necator poly(3-hydroxybutyrate) (PHB) biosynthesis pathway are comparatively examined. Through the statistical ODT analyses of the bacterial cells, the distinctive characteristics for density and localization of PHB granules in vivo could be observed. The PHB granules in recombinant E. coli show higher density and localization polarity compared with those of C. necator, indicating that polymer chains are more densely packed and granules tend to be located at the cell poles, respectively. The cells were investigated in more detail through real-time 3D analyses, showing how differently PHA granules are processed in relation to the cell division process in native and nonnative PHA-producing strains. We also show that PHA granule-associated protein PhaM of C. necator plays a key role in making these differences between C. necator and recombinant E. coli strains. This study provides spatiotemporal insights into PHA accumulation inside the native and recombinant bacterial cells.


Assuntos
Cupriavidus necator/química , Escherichia coli/química , Poli-Hidroxialcanoatos/química , Tomografia Óptica/métodos , Cupriavidus necator/metabolismo , Imageamento Tridimensional
9.
Light Sci Appl ; 10(1): 102, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33994544

RESUMO

A major challenge in three-dimensional (3D) microscopy is to obtain accurate spatial information while simultaneously keeping the microscopic samples in their native states. In conventional 3D microscopy, axial resolution is inferior to spatial resolution due to the inaccessibility to side scattering signals. In this study, we demonstrate the isotropic microtomography of free-floating samples by optically rotating a sample. Contrary to previous approaches using optical tweezers with multiple foci which are only applicable to simple shapes, we exploited 3D structured light traps that can stably rotate freestanding complex-shaped microscopic specimens, and side scattering information is measured at various sample orientations to achieve isotropic resolution. The proposed method yields an isotropic resolution of 230 nm and captures structural details of colloidal multimers and live red blood cells, which are inaccessible using conventional tomographic microscopy. We envision that the proposed approach can be deployed for solving diverse imaging problems that are beyond the examples shown here.

10.
Health Phys ; 120(2): 152-162, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32701613

RESUMO

ABSTRACT: We aim to improve the accuracy of electron paramagnetic resonance (EPR)-based in vivo tooth dosimetry using the relationship between tooth geometry and radiation-induced signals (RIS). A homebuilt EPR spectrometer at L-band frequency of 1.15 GHz originally designed for non-invasive and in vivo measurements of intact teeth was used to measure the RIS of extracted human teeth. Twenty human central incisors were scanned by microCT and irradiated by 220 kVp x-rays. The RISs of the samples were measured by the EPR spectrometer as well as simulated by using the finite element analysis of the electromagnetic field. A linear relationship between simulated RISs and tooth geometric dimensions, such as enamel area, enamel volume, and labial enamel volume, was confirmed. The dose sensitivity was quantified as a slope of the calibration curve (i.e., RIS vs. dose) for each tooth sample. The linear regression of these dose sensitivities was established for each of three tooth geometric dimensions. Based on these findings, a method for the geometry correction was developed by use of expected dose sensitivity of a certain tooth for one of the tooth geometric dimensions. Using upper incisors, the mean absolute deviation (MAD) without correction was 1.48 Gy from an estimated dose of 10 Gy; however, the MAD corrected by enamel area, volume, and labial volume was reduced to 1.04 Gy, 0.77 Gy, and 0.83 Gy, respectively. In general, the method corrected by enamel volume showed the best accuracy in this study. This homebuilt EPR spectrometer for the purpose of non-invasive and in vivo tooth dosimetry was successfully tested for achieving measurements in situ. We demonstrated that the developed correction method could reduce dosimetric uncertainties resulting from the variations in tooth geometric dimensions.


Assuntos
Esmalte Dentário/citologia , Esmalte Dentário/efeitos da radiação , Espectroscopia de Ressonância de Spin Eletrônica , Transdução de Sinais/efeitos da radiação , Humanos , Radiometria
11.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498322

RESUMO

The development of optical and computational techniques has enabled imaging without the need for traditional optical imaging systems. Modern lensless imaging techniques overcome several restrictions imposed by lenses, while preserving or even surpassing the capability of lens-based imaging. However, existing lensless methods often rely on a priori information about objects or imaging conditions. Thus, they are not ideal for general imaging purposes. The recent development of the speckle-correlation scattering matrix (SSM) techniques facilitates new opportunities for lensless imaging and sensing. In this review, we present the fundamentals of SSM methods and highlight recent implementations for holographic imaging, microscopy, optical mode demultiplexing, and quantification of the degree of the coherence of light. We conclude with a discussion of the potential of SSM and future research directions.

12.
Biomed Opt Express ; 11(3): 1257-1267, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206407

RESUMO

Measuring alterations in bacteria upon antibiotic application is important for basic studies in microbiology, drug discovery, clinical diagnosis, and disease treatment. However, imaging and 3D time-lapse response analysis of individual bacteria upon antibiotic application remain largely unexplored mainly due to limitations in imaging techniques. Here, we present a method to systematically investigate the alterations in individual bacteria in 3D and quantitatively analyze the effects of antibiotics. Using optical diffraction tomography, in-situ responses of Escherichia coli and Bacillus subtilis to various concentrations of ampicillin were investigated in a label-free and quantitative manner. The presented method reconstructs the dynamic changes in the 3D refractive-index distributions of living bacteria in response to antibiotics at sub-micrometer spatial resolution.

13.
Nanomaterials (Basel) ; 9(3)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875936

RESUMO

Lithium⁻sulfur (Li⁻S) batteries are expected to be very useful for next-generation transportation and grid storage because of their high energy density and low cost. However, their low active material utilization and poor cycle life limit their practical application. The use of a carbon-coated separator in these batteries serves to inhibit the migration of the lithium polysulfide intermediate and increases the recyclability. We report the extent to which the electrochemical performance of Li⁻S battery systems depends on the characteristics of the carbon coating of the separator. Carbon-coated separators containing different ratios of carbon black (Super-P) and vapor-grown carbon fibers (VGCFs) were prepared and evaluated in Li⁻S batteries. The results showed that larger amounts of Super-P on the carbon-coated separator enhanced the electrochemical performance of Li⁻S batteries; for instance, the pure Super-P coating exhibited the highest discharge capacity (602.1 mAh g-1 at 150 cycles) with a Coulombic efficiency exceeding 95%. Furthermore, the separators with the pure Super-P coating had a smaller pore structure, and hence, limited polysulfide migration, compared to separators containing Super-P/VGCF mixtures. These results indicate that it is necessary to control the porosity of the porous membrane to control the movement of the lithium polysulfide.

14.
ACS Appl Mater Interfaces ; 10(19): 16521-16530, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29737830

RESUMO

The commercialization of Li metal electrodes is a long-standing objective in the battery community. To accomplish this goal, the formation of Li dendrites and mossy Li deposition, which cause poor cycle performance and safety issues, must be resolved. In addition, it is necessary to develop wide and thin Li metal anodes to increase not only the energy density, but also the design freedom of large-scale Li-metal-based batteries. We solved both issues by developing a novel approach involving the application of calendared stabilized Li metal powder (LiMP) electrodes as anodes. In this study, we fabricated a 21.5 cm wide and 40 µm thick compressed LiMP electrode and investigated the correlation between the compression level and electrochemical performance. A high level of compression (40% compression) physically activated the LiMP surface to suppress the dendritic and mossy Li metal formation at high current densities. Furthermore, as a result of the LiMP self-healing because of electrochemical activation, the 40% compressed LiMP electrode exhibited an excellent cycle performance (reaching 90% of the initial discharge capacity after the 360th cycle), which was improved by more than a factor of 2 compared to that of a flat Li metal foil with the same thickness (90% of the initial discharge capacity after the 150th cycle).

15.
ACS Omega ; 2(11): 8438-8444, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457381

RESUMO

Herein, we improved the performance of Si/graphite (Si/C) composite anodes by introducing a highly adhesive co-polyimide (P84) binder and investigated the relationship between their electrochemical and adhesion properties using the 90° peel test and a surface and interfacial cutting analysis system. Compared to those of conventional poly(vinylidene fluoride) (PVdF)-based electrodes, the cycling performance and rate capability of P84-based Si/C anodes were improved by 47.0% (372 vs 547 mAh g-1 after 100 cycles at a 60 mA g-1 discharge condition) and 33.4% (359 vs 479 mAh g-1 after 70 cycles at a 3.0 A g-1 discharge condition), respectively. Importantly, the P84-based electrodes exhibited less pronounced morphological changes and a smaller total cell resistance after cycling than the PVdF-based ones, also showing better interlayer adhesion (F mid) and interfacial adhesion to Cu current collectors (F inter).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...