Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136742

RESUMO

With the increasing challenge of controlling infectious diseases due to the emergence of antibiotic-resistant strains, the importance of discovering new antimicrobial agents is rapidly increasing. Animal venoms contain a variety of functional peptides, making them a promising platform for pharmaceutical development. In this study, a novel toxin peptide with antibacterial and anti-inflammatory activities was discovered from the spider venom gland transcriptome by implementing computational approaches. Lycotoxin-Pa2a (Lytx-Pa2a) showed homology to known-spider toxin, where functional prediction indicated the potential of both antibacterial and anti-inflammatory peptides without hemolytic activity. The colony-forming assay and minimum inhibitory concentration test showed that Lytx-Pa2a exhibited comparable or stronger antibacterial activity against pathogenic strains than melittin. Following mechanistic studies revealed that Lytx-Pa2a disrupts both cytoplasmic and outer membranes of bacteria while simultaneously inducing the accumulation of reactive oxygen species. The peptide exerted no significant toxicity when treated to human primary cells, murine macrophages, and bovine red blood cells. Moreover, Lytx-Pa2a alleviated lipopolysaccharide-induced inflammation in mouse macrophages by suppressing the expression of inflammatory mediators. These findings not only suggested that Lytx-Pa2a with dual activity can be utilized as a new antimicrobial agent for infectious diseases but also demonstrated the implementation of in silico methods for discovering a novel functional peptide, which may enhance the future utilization of biological resources.

2.
Toxins (Basel) ; 15(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133172

RESUMO

The escalating prevalence of antibiotic-resistant bacteria poses an immediate and grave threat to public health. Antimicrobial peptides (AMPs) have gained significant attention as a promising alternative to conventional antibiotics. Animal venom comprises a diverse array of bioactive compounds, which can be a rich source for identifying new functional peptides. In this study, we identified a toxin peptide, Lycotoxin-Pa1a (Lytx-Pa1a), from the transcriptome of the Pardosa astrigera spider venom gland. To enhance its functional properties, we employed an in silico approach to design a novel hybrid peptide, KFH-Pa1a, by predicting antibacterial and cytotoxic functionalities and incorporating the amino-terminal Cu(II)- and Ni(II) (ATCUN)-binding motif. KFH-Pa1a demonstrated markedly superior antimicrobial efficacy against pathogens, including multidrug-resistant (MDR) Pseudomonas aeruginosa, compared to Lytx-Pa1a. Notably, KFH-Pa1a exerted several distinct mechanisms, including the disruption of the bacterial cytoplasmic membrane, the generation of intracellular ROS, and the cleavage and inhibition of bacterial DNA. Additionally, the hybrid peptide showed synergistic activity when combined with conventional antibiotics. Our research not only identified a novel toxin peptide from spider venom but demonstrated in silico-based design of hybrid AMP with strong antimicrobial activity that can contribute to combating MDR pathogens, broadening the utilization of biological resources by incorporating computational approaches.


Assuntos
Anti-Infecciosos , Venenos de Aranha , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias , Venenos de Aranha/farmacologia , Testes de Sensibilidade Microbiana
3.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047129

RESUMO

Toluene diisocyanate (TDI) is commonly used in manufacturing, and it is highly reactive and causes respiratory damage. This study aims to identify the mechanism of tumorigenesis in bronchial epithelial cells induced by chronic TDI exposure. In addition, transcriptome analysis results confirmed that TDI increases transforming growth factor-beta 1 (TGF-ß1) expression and regulates genes associated with cancerous characteristics in bronchial cells. Our chronically TDI-exposed model exhibited elongated spindle-like morphology, a mesenchymal characteristic. Epithelial-mesenchymal transition (EMT) was evaluated following chronic TDI exposure, and EMT biomarkers increased concentration-dependently. Furthermore, our results indicated diminished cell adhesion molecules and intensified cell migration and invasion. In order to investigate the cellular regulatory mechanisms resulting from chronic TDI exposure, we focused on TGF-ß1, a key factor regulated by TDI exposure. As predicted, TGF-ß1 was significantly up-regulated and secreted in chronically TDI-exposed cells. In addition, SMAD2/3 was also activated considerably as it is the direct target of TGF-ß1 and TGF-ß1 receptors. Inhibiting TGF-ß1 signaling through blocking of the TGF-ß receptor attenuated EMT and cell migration in chronically TDI-exposed cells. Our results corroborate that chronic TDI exposure upregulates TGF-ß1 secretion, activates TGF-ß1 signal transduction, and leads to EMT and other cancer properties.


Assuntos
Tolueno 2,4-Di-Isocianato , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Movimento Celular , Transição Epitelial-Mesenquimal
4.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555235

RESUMO

Despite the current developments in cancer therapeutics, efforts to excavate new anticancer agents continue rigorously due to obstacles, such as side effects and drug resistance. Anticancer peptides (ACPs) can be utilized to treat cancer because of their effectiveness on a variety of molecular targets, along with high selectivity and specificity for cancer cells. In the present study, a novel ACP was de novo designed using in silico methods, and its functionality and molecular mechanisms of action were explored. AC-P19M was discovered through functional prediction and sequence modification based on peptide sequences currently available in the database. The peptide exhibited anticancer activity against lung cancer cells, A549 and H460, by disrupting cellular membranes and inducing apoptosis while showing low toxicity towards normal and red blood cells. In addition, the peptide inhibited the migration and invasion of lung cancer cells and reversed epithelial-mesenchymal transition. Moreover, AC-P19M showed anti-angiogenic activity through the inhibition of vascular endothelial growth factor receptor 2 signaling. Our findings suggest that AC-P19M is a novel ACP that directly or indirectly targets cancer cells, demonstrating the potential development of an anticancer agent and providing insights into the discovery of functional substances based on an in silico approach.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Peptídeos , Humanos , Células A549 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...