Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biomed Imaging ; 2024: 8862387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449563

RESUMO

Superresolution, structured illumination microscopy (SIM) is an ideal modality for imaging live cells due to its relatively high speed and low photon-induced damage to the cells. The rate-limiting step in observing a superresolution image in SIM is often the reconstruction speed of the algorithm used to form a single image from as many as nine raw images. Reconstruction algorithms impose a significant computing burden due to an intricate workflow and a large number of often complex calculations to produce the final image. Further adding to the computing burden is that the code, even within the MATLAB environment, can be inefficiently written by microscopists who are noncomputer science researchers. In addition, they do not take into consideration the processing power of the graphics processing unit (GPU) of the computer. To address these issues, we present simple but efficient approaches to first revise MATLAB code, followed by conversion to GPU-optimized code. When combined with cost-effective, high-performance GPU-enabled computers, a 4- to 500-fold improvement in algorithm execution speed is observed as shown for the image denoising Hessian-SIM algorithm. Importantly, the improved algorithm produces images identical in quality to the original.

2.
Innovation (Camb) ; 4(3): 100425, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37181226

RESUMO

Super-resolution structured illumination microscopy (SR-SIM) is finding increasing application in biomedical research due to its superior ability to visualize subcellular dynamics in living cells. However, during image reconstruction artifacts can be introduced and when coupled with time-consuming postprocessing procedures, limits this technique from becoming a routine imaging tool for biologists. To address these issues, an accelerated, artifact-reduced reconstruction algorithm termed joint space frequency reconstruction-based artifact reduction algorithm (JSFR-AR-SIM) was developed by integrating a high-speed reconstruction framework with a high-fidelity optimization approach designed to suppress the sidelobe artifact. Consequently, JSFR-AR-SIM produces high-quality, super-resolution images with minimal artifacts, and the reconstruction speed is increased. We anticipate this algorithm to facilitate SR-SIM becoming a routine tool in biomedical laboratories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...