Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(1): 95-109.e26, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181745

RESUMO

DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.


Assuntos
DNA Mitocondrial , Efetores Semelhantes a Ativadores de Transcrição , Animais , Humanos , Camundongos , Adenina , Citosina , DNA Mitocondrial/genética , Edição de Genes , RNA , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Engenharia de Proteínas
2.
Nat Commun ; 14(1): 5728, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714840

RESUMO

Arachidonic and adrenic acids in the membrane play key roles in ferroptosis. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen reveals that darapladib, an inhibitor of Lp-PLA2, synergistically induces ferroptosis in the presence of GPX4 inhibitors. We show that darapladib is able to enhance ferroptosis under lipoprotein-deficient or serum-free conditions. Furthermore, we find that Lp-PLA2 is located in the membrane and cytoplasm and suppresses ferroptosis, suggesting a critical role for intracellular Lp-PLA2. Lipidomic analyses show that darapladib treatment or deletion of PLA2G7, which encodes Lp-PLA2, generally enriches phosphatidylethanolamine species and reduces lysophosphatidylethanolamine species. Moreover, combination treatment of darapladib with the GPX4 inhibitor PACMA31 efficiently inhibits tumour growth in a xenograft model. Our study suggests that inhibition of Lp-PLA2 is a potential therapeutic strategy to enhance ferroptosis in cancer treatment.


Assuntos
Ferroptose , Neoplasias , Humanos , 1-Alquil-2-acetilglicerofosfocolina Esterase/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias/tratamento farmacológico
3.
Cell Death Dis ; 14(8): 567, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633973

RESUMO

Ferroptosis, a type of cell death induced by lipid peroxidation, has emerged as a novel anti-cancer strategy. Cancer cells frequently acquire resistance to ferroptosis. However, the underlying mechanisms are poorly understood. To address this issue, we conducted a thorough investigation of the genomic and transcriptomic data derived from hundreds of human cancer cell lines and primary tissue samples, with a particular focus on non-small cell lung carcinoma (NSCLC). It was observed that mutations in Kelch-like ECH-associated protein 1 (KEAP1) and subsequent nuclear factor erythroid 2-related factor 2 (NRF2, also known as NFE2L2) activation are strongly associated with ferroptosis resistance in NSCLC. Additionally, AIFM2 gene, which encodes ferroptosis suppressor protein 1 (FSP1), was identified as the gene most significantly correlated with ferroptosis resistance, followed by multiple NRF2 targets. We found that inhibition of NRF2 alone was not sufficient to reduce FSP1 protein levels and promote ferroptosis, whereas FSP1 inhibition effectively sensitized KEAP1-mutant NSCLC cells to ferroptosis. Furthermore, we found that combined inhibition of FSP1 and NRF2 induced ferroptosis more intensely. Our findings imply that FSP1 is a crucial suppressor of ferroptosis whose expression is partially dependent on NRF2 and that synergistically targeting both FSP1 and NRF2 may be a promising strategy for overcoming ferroptosis resistance in cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Ferroptose/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2/genética
4.
Front Mol Biosci ; 10: 1221669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635938

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.

5.
Nat Commun ; 14(1): 3746, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353518

RESUMO

Brown adipose tissue (BAT) has abundant mitochondria with the unique capability of generating heat via uncoupled respiration. Mitochondrial uncoupling protein 1 (UCP1) is activated in BAT during cold stress and dissipates mitochondrial proton motive force generated by the electron transport chain to generate heat. However, other mitochondrial factors required for brown adipocyte respiration and thermogenesis under cold stress are largely unknown. Here, we show LETM1 domain-containing protein 1 (LETMD1) is a BAT-enriched and cold-induced protein required for cold-stimulated respiration and thermogenesis of BAT. Proximity labeling studies reveal that LETMD1 is a mitochondrial matrix protein. Letmd1 knockout male mice display aberrant BAT mitochondria and fail to carry out adaptive thermogenesis under cold stress. Letmd1 knockout BAT is deficient in oxidative phosphorylation (OXPHOS) complex proteins and has impaired mitochondrial respiration. In addition, BAT-specific Letmd1 deficient mice exhibit phenotypes identical to those observed in Letmd1 knockout mice. Collectively, we demonstrate that the BAT-enriched mitochondrial matrix protein LETMD1 plays a tissue-autonomous role that is essential for BAT mitochondrial function and thermogenesis.


Assuntos
Tecido Adiposo Marrom , Proteínas Mitocondriais , Termogênese , Animais , Masculino , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Diabetologia ; 66(5): 931-954, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759348

RESUMO

AIMS/HYPOTHESIS: Non-alcoholic fatty liver disease (NAFLD) associated with type 2 diabetes may more easily progress towards severe forms of non-alcoholic steatohepatitis (NASH) and cirrhosis. Although the Wnt effector transcription factor 7-like 2 (TCF7L2) is closely associated with type 2 diabetes risk, the role of TCF7L2 in NAFLD development remains unclear. Here, we investigated how changes in TCF7L2 expression in the liver affects hepatic lipid metabolism based on the major risk factors of NAFLD development. METHODS: Tcf7l2 was selectively ablated in the liver of C57BL/6N mice by inducing the albumin (Alb) promoter to recombine Tcf7l2 alleles floxed at exon 5 (liver-specific Tcf7l2-knockout [KO] mice: Alb-Cre;Tcf7l2f/f). Alb-Cre;Tcf7l2f/f and their wild-type (Tcf7l2f/f) littermates were fed a high-fat diet (HFD) or a high-carbohydrate diet (HCD) for 22 weeks to reproduce NAFLD/NASH. Mice were refed a standard chow diet or an HCD to stimulate de novo lipogenesis (DNL) or fed an HFD to provide exogenous fatty acids. We analysed glucose and insulin sensitivity, metabolic respiration, mRNA expression profiles, hepatic triglyceride (TG), hepatic DNL, selected hepatic metabolites, selected plasma metabolites and liver histology. RESULTS: Alb-Cre;Tcf7l2f/f essentially exhibited increased lipogenic genes, but there were no changes in hepatic lipid content in mice fed a normal chow diet. However, following 22 weeks of diet-induced NAFLD/NASH conditions, liver steatosis was exacerbated owing to preferential metabolism of carbohydrate over fat. Indeed, hepatic Tcf7l2 deficiency enhanced liver lipid content in a manner that was dependent on the duration and amount of exposure to carbohydrates, owing to cell-autonomous increases in hepatic DNL. Mechanistically, TCF7L2 regulated the transcriptional activity of Mlxipl (also known as ChREBP) by modulating O-GlcNAcylation and protein content of carbohydrate response element binding protein (ChREBP), and targeted Srebf1 (also called SREBP1) via miRNA (miR)-33-5p in hepatocytes. Eventually, restoring TCF7L2 expression at the physiological level in the liver of Alb-Cre;Tcf7l2f/f mice alleviated liver steatosis without altering body composition under both acute and chronic HCD conditions. CONCLUSIONS/INTERPRETATION: In mice, loss of hepatic Tcf7l2 contributes to liver steatosis by inducing preferential metabolism of carbohydrates via DNL activation. Therefore, TCF7L2 could be a promising regulator of the NAFLD associated with high-carbohydrate diets and diabetes since TCF7L2 deficiency may lead to development of NAFLD by promoting utilisation of excess glucose pools through activating DNL. DATA AVAILABILITY: RNA-sequencing data have been deposited into the NCBI GEO under the accession number GSE162449 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162449 ).


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipogênese/genética , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatócitos/metabolismo , Dieta Hiperlipídica , Triglicerídeos/metabolismo , Glucose/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo
7.
Theranostics ; 13(3): 1076-1090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793871

RESUMO

Precise regulation of kinases and phosphatases is crucial for human metabolic homeostasis. This study aimed to investigate the roles and molecular mechanisms of protein tyrosine phosphatase type IVA1 (PTP4A1) in regulating hepatosteatosis and glucose homeostasis. Method: Ptp4a1-/- mice, adeno-associated virus encoding Ptp4a1 under liver-specific promoter, adenovirus encoding Fgf21, and primary hepatocytes were used to evaluate PTP4A1-mediated regulation in the hepatosteatosis and glucose homeostasis. Glucose tolerance test, insulin tolerance test, 2-deoxyglucose uptake assay, and hyperinsulinemic-euglycemic clamp were performed to estimate glucose homeostasis in mice. The staining, including oil red O, hematoxylin & eosin, and BODIPY, and biochemical analysis for hepatic triglycerides were performed to assess hepatic lipids. Luciferase reporter assays, immunoprecipitation, immunoblots, quantitative real-time polymerase chain reaction, and immunohistochemistry staining were conducted to explore the underlying mechanism. Results: Here, we found that deficiency of PTP4A1 aggravated glucose homeostasis and hepatosteatosis in mice fed a high-fat (HF) diet. Increased lipid accumulation in hepatocytes of Ptp4a1-/- mice reduced the level of glucose transporter 2 on the plasma membrane of hepatocytes leading to a diminution of glucose uptake. PTP4A1 prevented hepatosteatosis by activating the transcription factor cyclic adenosine monophosphate-responsive element-binding protein H (CREBH)/fibroblast growth factor 21 (FGF21) axis. Liver-specific PTP4A1 or systemic FGF21 overexpression in Ptp4a1-/- mice fed an HF diet restored the disorder of hepatosteatosis and glucose homeostasis. Finally, liver-specific PTP4A1 expression ameliorated an HF diet-induced hepatosteatosis and hyperglycemia in wild-type mice. Conclusions: Hepatic PTP4A1 is critical for regulating hepatosteatosis and glucose homeostasis by activating the CREBH/FGF21 axis. Our current study provides a novel function of PTP4A1 in metabolic disorders; hence, modulating PTP4A1 may be a potential therapeutic strategy against hepatosteatosis-related diseases.


Assuntos
Dieta Hiperlipídica , Hiperglicemia , Humanos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hiperglicemia/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ciclo Celular/metabolismo
8.
Exp Mol Med ; 54(8): 1250-1261, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36028759

RESUMO

Obesity is a growing global epidemic that can cause serious adverse health consequences, including insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). Obesity development can be attributed to energy imbalance and metabolic inflexibility. Here, we demonstrated that lack of Kelch-like protein 3 (KLHL3) mitigated the development of obesity, IR, and NAFLD by increasing energy expenditure. KLHL3 mutations in humans cause Gordon's hypertension syndrome; however, the role of KLHL3 in obesity was previously unknown. We examined differences in obesity-related parameters between control and Klhl3-/- mice. A significant decrease in body weight concomitant with fat mass loss and improved IR and NAFLD were observed in Klhl3-/- mice fed a high-fat (HF) diet and aged. KLHL3 deficiency inhibited obesity, IR, and NAFLD by increasing energy expenditure with augmentation of O2 consumption and CO2 production. Delivering dominant-negative (DN) Klhl3 using adeno-associated virus into mice, thereby dominantly expressing DN-KLHL3 in the liver, ameliorated diet-induced obesity, IR, and NAFLD. Finally, adenoviral overexpression of DN-KLHL3, but not wild-type KLHL3, in hepatocytes revealed an energetic phenotype with an increase in the oxygen consumption rate. The present findings demonstrate a novel function of KLHL3 mutation in extrarenal tissues, such as the liver, and may provide a therapeutic target against obesity and obesity-related diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Metabolismo Energético , Resistência à Insulina , Proteínas dos Microfilamentos , Hepatopatia Gordurosa não Alcoólica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Humanos , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/genética , Obesidade/metabolismo
9.
Cells ; 11(9)2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563842

RESUMO

N-Myc downstream regulated gene 3 (NDRG3) is a unique pro-tumorigenic member among NDRG family genes, mediating growth signals. Here, we investigated the pathophysiological roles of NDRG3 in relation to cell metabolism by disrupting its functions in liver. Mice with liver-specific KO of NDRG3 (Ndrg3 LKO) exhibited glycogen storage disease (GSD) phenotypes including excessive hepatic glycogen accumulation, hypoglycemia, elevated liver triglyceride content, and several signs of liver injury. They suffered from impaired hepatic glucose homeostasis, due to the suppression of fasting-associated glycogenolysis and gluconeogenesis. Consistently, the expression of glycogen phosphorylase (PYGL) and glucose-6-phosphate transporter (G6PT) was significantly down-regulated in an Ndrg3 LKO-dependent manner. Transcriptomic and metabolomic analyses revealed that NDRG3 depletion significantly perturbed the methionine cycle, redirecting its flux towards branch pathways to upregulate several metabolites known to have hepatoprotective functions. Mechanistically, Ndrg3 LKO-dependent downregulation of glycine N-methyltransferase in the methionine cycle and the resultant elevation of the S-adenosylmethionine level appears to play a critical role in the restructuring of the methionine metabolism, eventually leading to the manifestation of GSD phenotypes in Ndrg3 LKO mice. Our results indicate that NDRG3 is required for the homeostasis of liver cell metabolism upstream of the glucose-glycogen flux and methionine cycle and suggest therapeutic values for regulating NDRG3 in disorders with malfunctions in these pathways.


Assuntos
Doença de Depósito de Glicogênio , Metionina , Animais , Glucose/metabolismo , Doença de Depósito de Glicogênio/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , S-Adenosilmetionina/metabolismo
10.
BMB Rep ; 54(12): 626-631, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34847985

RESUMO

Janus kinase 2 (JAK2), a non-receptor tyrosine kinase, is a critical component of cytokine and growth factor signaling pathways regulating hematopoietic cell proliferation. JAK2 mutations are associated with multiple myeloproliferative neoplasms. Although physiological and pathological functions of JAK2 in hematopoietic tissues are well-known, such functions of JAK2 in the nervous system are not well studied yet. The present study demonstrated that JAK2 could negatively regulate neuronal differentiation of mouse embryonic stem cells (ESCs). Depletion of JAK2 stimulated neuronal differentiation of mouse ESCs and activated glycogen synthase kinase 3ꞵ, Fyn, and cyclin-dependent kinase 5. Knockdown of JAK2 resulted in accumulation of GTPbound Rac1, a Rho GTPase implicated in the regulation of cytoskeletal dynamics. These findings suggest that JAK2 might negatively regulate neuronal differentiation by suppressing the GSK-3ß/Fyn/CDK5 signaling pathway responsible for morphological maturation. [BMB Reports 2021; 54(12): 626-631].


Assuntos
Diferenciação Celular , Janus Quinase 2 , Células-Tronco Embrionárias Murinas , Neurônios/citologia , Animais , Quinase 5 Dependente de Ciclina , Glicogênio Sintase Quinase 3 beta/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteínas Proto-Oncogênicas c-fyn , Transdução de Sinais
11.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946468

RESUMO

Mitochondria are the major source of intercellular bioenergy in the form of ATP. They are necessary for cell survival and play many essential roles such as maintaining calcium homeostasis, body temperature, regulation of metabolism and apoptosis. Mitochondrial dysfunction has been observed in variety of diseases such as cardiovascular disease, aging, type 2 diabetes, cancer and degenerative brain disease. In other words, the interpretation and regulation of mitochondrial signals has the potential to be applied as a treatment for various diseases caused by mitochondrial disorders. In recent years, mitochondrial transplantation has increasingly been a topic of interest as an innovative strategy for the treatment of mitochondrial diseases by augmentation and replacement of mitochondria. In this review, we focus on diseases that are associated with mitochondrial dysfunction and highlight studies related to the rescue of tissue-specific mitochondrial disorders. We firmly believe that mitochondrial transplantation is an optimistic therapeutic approach in finding a potentially valuable treatment for a variety of mitochondrial diseases.


Assuntos
Mitocôndrias/transplante , Doenças Mitocondriais/terapia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/terapia , Humanos , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/terapia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Dinâmica Mitocondrial , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia
12.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925827

RESUMO

Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica , Obesidade/complicações , Adipocinas/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Progressão da Doença , Humanos , Fígado/metabolismo , Cirrose Hepática/fisiopatologia , Falência Hepática , Neoplasias Hepáticas/fisiopatologia , Síndrome Metabólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
13.
Biomedicines ; 9(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435535

RESUMO

Increased hepatic gluconeogenesis is one of the main contributors to the development of type 2 diabetes. Recently, it has been reported that growth arrest and DNA damage-inducible 45 beta (GADD45ß) is induced under both fasting and high-fat diet (HFD) conditions that stimulate hepatic gluconeogenesis. Here, this study aimed to establish the molecular mechanisms underlying the novel role of GADD45ß in hepatic gluconeogenesis. Both whole-body knockout (KO) mice and adenovirus-mediated knockdown (KD) mice of GADD45ß exhibited decreased hepatic gluconeogenic gene expression concomitant with reduced blood glucose levels under fasting and HFD conditions, but showed a more pronounced effect in GADD45ß KD mice. Further, in primary hepatocytes, GADD45ß KD reduced glucose output, whereas GADD45ß overexpression increased it. Mechanistically, GADD45ß did not affect Akt-mediated forkhead box protein O1 (FoxO1) phosphorylation and forskolin-induced cAMP response element-binding protein (CREB) phosphorylation. Rather it increased FoxO1 transcriptional activity via enhanced protein stability of FoxO1. Further, GADD45ß colocalized and physically interacted with FoxO1. Additionally, GADD45ß deficiency potentiated insulin-mediated suppression of hepatic gluconeogenic genes, and it were impeded by the restoration of GADD45ß expression. Our finding demonstrates GADD45ß as a novel and essential regulator of hepatic gluconeogenesis. It will provide a deeper understanding of the FoxO1-mediated gluconeogenesis.

14.
BMB Rep ; 54(2): 124-129, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33407993

RESUMO

In current times, obesity is a major health problem closely associated with metabolic disease such as diabetes, dyslipidemia, and cardiovascular disease. The direct cause of obesity is known as an abnormal increase in fat cell size and the adipocyte pool. Hyperplasia, the increase in number of adipocytes, results from adipogenesis in which preadipocytes differentiate into mature adipocytes. Adipogenesis is regulated by local and systemic cues that alter transduction pathways and subsequent control of adipogenic transcription factors. Therefore, the regulation of adipogenesis is an important target for preventing obesity. Myonectin, a member of the CTRP family, is a type of myokine released by skeletal muscle cells. Although several studies have shown that myonectin is associated with lipid metabolism, the role of myonectin during adipogenesis is not known. Here, we demonstrate the role of myonectin during adipocyte differentiation of 3T3-L1 cells. We found that myonectin inhibits the adipogenesis of 3T3-L1 preadipocytes with a reduction in the expression of adipogenic transcription factors such as C/EBPα, ß and PPARγ. Furthermore, we show that myonectin has an inhibitory effect on adipogenesis through the regulation of the p38 MAPK pathway and CHOP. These findings suggest that myonectin may be a novel therapeutic target for the prevention of obesity. [BMB Reports 2021; 54(2): 124-129].


Assuntos
Adipócitos/metabolismo , Adiponectina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células 3T3-L1 , Adipogenia , Animais , Células Cultivadas , Camundongos
15.
Proc Natl Acad Sci U S A ; 117(51): 32433-32442, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288688

RESUMO

Ferroptosis is an iron-dependent regulated necrosis mediated by lipid peroxidation. Cancer cells survive under metabolic stress conditions by altering lipid metabolism, which may alter their sensitivity to ferroptosis. However, the association between lipid metabolism and ferroptosis is not completely understood. In this study, we found that the expression of elongation of very long-chain fatty acid protein 5 (ELOVL5) and fatty acid desaturase 1 (FADS1) is up-regulated in mesenchymal-type gastric cancer cells (GCs), leading to ferroptosis sensitization. In contrast, these enzymes are silenced by DNA methylation in intestinal-type GCs, rendering cells resistant to ferroptosis. Lipid profiling and isotope tracing analyses revealed that intestinal-type GCs are unable to generate arachidonic acid (AA) and adrenic acid (AdA) from linoleic acid. AA supplementation of intestinal-type GCs restores their sensitivity to ferroptosis. Based on these data, the polyunsaturated fatty acid (PUFA) biosynthesis pathway plays an essential role in ferroptosis; thus, this pathway potentially represents a marker for predicting the efficacy of ferroptosis-mediated cancer therapy.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Ferroptose/fisiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Araquidônico/genética , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Carbolinas/farmacologia , Linhagem Celular Tumoral , Metilação de DNA , Dessaturase de Ácido Graxo Delta-5 , Elementos Facilitadores Genéticos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Regiões Promotoras Genéticas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
16.
J Biol Chem ; 295(39): 13677-13690, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32759168

RESUMO

Astrocytes perform multiple essential functions in the developing and mature brain, including regulation of synapse formation, control of neurotransmitter release and uptake, and maintenance of extracellular ion balance. As a result, astrocytes have been implicated in the progression of neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. Despite these critical functions, the study of human astrocytes can be difficult because standard differentiation protocols are time-consuming and technically challenging, but a differentiation protocol recently developed in our laboratory enables the efficient derivation of astrocytes from human embryonic stem cells. We used this protocol along with microarrays, luciferase assays, electrophoretic mobility shift assays, and ChIP assays to explore the genes involved in astrocyte differentiation. We demonstrate that paired-like homeodomain transcription factor 1 (PITX1) is critical for astrocyte differentiation. PITX1 overexpression induced early differentiation of astrocytes, and its knockdown blocked astrocyte differentiation. PITX1 overexpression also increased and PITX1 knockdown decreased expression of sex-determining region Y box 9 (SOX9), known initiator of gliogenesis, during early astrocyte differentiation. Moreover, we determined that PITX1 activates the SOX9 promoter through a unique binding motif. Taken together, these findings indicate that PITX1 drives astrocyte differentiation by sustaining activation of the SOX9 promoter.


Assuntos
Astrócitos/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição SOX9/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição SOX9/genética
17.
Sci Rep ; 10(1): 10755, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612143

RESUMO

Nurr1, a transcription factor belonging to the orphan nuclear receptor, has an essential role in the generation and maintenance of dopaminergic neurons and is important in the pathogenesis of Parkinson' disease (PD). In addition, Nurr1 has a non-neuronal function, and it is especially well known that Nurr1 has an anti-inflammatory function in the Parkinson's disease model. However, the molecular mechanisms of Nurr1 have not been elucidated. In this study, we describe a novel mechanism of Nurr1 function. To provide new insights into the molecular mechanisms of Nurr1 in the inflammatory response, we performed Chromatin immunoprecipitation sequencing (ChIP-Seq) on LPS-induced inflammation in BV2 cells and finally identified the RasGRP1 gene as a novel target of Nurr1. Here, we show that Nurr1 directly binds to the RasGRP1 intron to regulate its expression. Moreover, we also identified that RasGRP1 regulates the Ras-Raf-MEK-ERK signaling cascade in LPS-induced inflammation signaling. Finally, we conclude that RasGRP1 is a novel regulator of Nurr1's mediated inflammation signaling.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Inflamação/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Linhagem Celular , Cromatina/química , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Íntrons , Lipopolissacarídeos/química , Camundongos , Microglia/metabolismo , Doença de Parkinson/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
18.
Metabolism ; 109: 154280, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32473155

RESUMO

OBJECTIVE: Obesity is recognized as the cause of multiple metabolic diseases and is rapidly increasing worldwide. As obesity is due to an imbalance in energy homeostasis, the promotion of energy consumption through browning of white adipose tissue (WAT) has emerged as a promising therapeutic strategy to counter the obesity epidemic. However, the molecular mechanisms of the browning process are not well understood. In this study, we investigated the effects of the GATA family of transcription factors on the browning process. METHODS: We used qPCR to analyze the expression of GATA family members during WAT browning. In order to investigate the function of GATA3 in the browning process, we used the lentivirus system for the ectopic expression and knockdown of GATA3. Western blot and real-time qPCR analyses revealed the regulation of thermogenic genes upon ectopic expression and knockdown of GATA3. Luciferase reporter assays, co-immunoprecipitation, and chromatin immunoprecipitation were performed to demonstrate that GATA3 interacts with proliferator-activated receptor-γ co-activator-1α (PGC-1α) to regulate the promoter activity of uncoupling protein-1 (UCP-1). Enhanced energy expenditure by GATA3 was confirmed using oxygen consumption assays, and the mitochondrial content was assessed using MitoTracker. Furthermore, we examined the in vivo effects of lentiviral GATA3 overexpression and knockdown in inguinal adipose tissue of mice. RESULTS: Gata3 expression levels were significantly elevated in the inguinal adipose tissue of mice exposed to cold conditions. Ectopic expression of GATA3 enhanced the expression of UCP-1 and thermogenic genes upon treatment with norepinephrine whereas GATA3 knockdown had the opposite effect. Luciferase reporter assays using the UCP-1 promoter region showed that UCP-1 expression was increased in a dose-dependent manner by GATA3 regardless of norepinephrine treatment. GATA3 was found to directly bind to the promoter region of UCP-1. Furthermore, our results indicated that GATA3 interacts with the transcriptional coactivator PGC-1α to increase the expression of UCP-1. Taken together, we demonstrate that GATA3 has an important role in enhancing energy expenditure by increasing the expression of thermogenic genes both in vitro and in vivo. CONCLUSION: GATA3 may represent a promising target for the prevention and treatment of obesity by regulating thermogenic capacity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Fator de Transcrição GATA3/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Desacopladora 1/metabolismo , Animais , Temperatura Baixa , Metabolismo Energético , Fator de Transcrição GATA3/genética , Humanos , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Regiões Promotoras Genéticas , Termogênese/genética , Proteína Desacopladora 1/genética , Regulação para Cima
19.
Metabolism ; 105: 154173, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035087

RESUMO

OBJECTIVE: Brown adipocytes play important roles in the regulation of energy homeostasis by uncoupling protein 1-mediated non-shivering thermogenesis. Recent studies suggest that brown adipocytes as novel therapeutic targets for combating obesity and associated diseases, such as type II diabetes. However, the molecular mechanisms underlying brown adipocyte differentiation and function are not fully understood. METHODS: We employed previous findings obtained through proteomic studies performed to assess proteins displaying altered levels during brown adipocyte differentiation. Here, we performed assays to determine the functional significance of their altered levels during brown adipogenesis and development. RESULTS: We identified isocitrate dehydrogenase 1 (IDH1) as upregulated during brown adipocyte differentiation, with subsequent investigations revealing that ectopic expression of IDH1 inhibited brown adipogenesis, whereas suppression of IDH1 levels promoted differentiation of brown adipocytes. Additionally, Idh1 overexpression resulted in increased levels of intracellular α-ketoglutarate (α-KG) and inhibited the expression of genes involved in brown adipogenesis. Exogenous treatment with α-KG reduced brown adipogenesis during the early phase of differentiation, and ChIP analysis revealed that IDH1-mediated α-KG reduced trimethylation of histone H3 lysine 4 in the promoters of genes associated with brown adipogenesis. Furthermore, administration of α-KG decreased adipogenic gene expression by modulating histone methylation in brown adipose tissues of mice. CONCLUSION: These results suggested that the IDH1-α-KG axis plays an important role in regulating brown adipocyte differentiation and might represent a therapeutic target for treating metabolic diseases.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Histonas/metabolismo , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Adipogenia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Termogênese/genética , Termogênese/fisiologia
20.
Autophagy ; 16(1): 86-105, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30907226

RESUMO

Saturated fatty acid (SFA)-induced lipotoxicity is caused by the accumulation of reactive oxygen species (ROS), which is associated with damaged mitochondria. Moreover, lipotoxicity is crucial for the progression of nonalcoholic steatohepatitis (NASH). Autophagy is required for the clearance of protein aggregates or damaged mitochondria to maintain cellular metabolic homeostasis. The NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2)-KEAP1 (kelch like ECH associated protein 1) pathway is essential for the elimination of ROS. ULK1 (unc-51 like autophagy activating kinase 1; yeast Atg1) is involved in the initiation of autophagy; however, its role in lipotoxicity-induced cell death in hepatocytes and mouse liver has not been elucidated. We now show that ULK1 potentiates the interaction between KEAP1 and the autophagy adaptor protein SQSTM1/p62, thereby mediating NFE2L2 activation in a manner requiring SQSTM1-dependent autophagic KEAP1 degradation. Furthermore, ULK1 is required for the autophagic removal of damaged mitochondria and to enhance binding between SQSTM1 and PINK1 (PTEN induced kinase 1). This study demonstrates the molecular mechanisms underlying the cytoprotective role of ULK1 against lipotoxicity. Thus, ULK1 could represent a potential therapeutic target for the treatment of NASH.Abbreviations: ACTB: actin beta; CM-H2DCFDA:5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate; CQ: chloroquine; CUL3: cullin 3; DMSO: dimethyl sulfoxide; GSTA1: glutathione S-transferase A1; HA: hemagglutinin; Hepa1c1c7: mouse hepatoma cells; HMOX1/HO-1: heme oxygenase 1; KEAP1: kelch like ECH associated protein 1; LPS: lipopolysaccharides; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK8/JNK: mitogen-activated protein kinase 8; MEF: mouse embryonic fibroblast; MFN1: mitofusin 1; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NASH: nonalcoholic steatohepatitis; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; NQO1: NAD(P)H quinone dehydrogenase 1; PA: palmitic acid; PARP: poly (ADP-ribose) polymerase 1; PINK1: PTEN induced kinase 1; PRKAA1/2: protein kinase AMP-activated catalytic subunits alpha1/2; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; PRKC/PKC: protein kinase C; RBX1: ring-box 1; ROS: reactive oxygen species; SFA: saturated fatty acid; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Citoproteção/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/genética , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Sequestossoma-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...