Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300293

RESUMO

OBJECTIVES: This study aims to develop computer-aided detection (CAD) for colorectal cancer (CRC) using abdominal CT based on a deep convolutional neural network. METHODS: This retrospective study included consecutive patients with colorectal adenocarcinoma who underwent abdominal CT before CRC resection surgery (training set = 379, test set = 103). We customized the 3D U-Net of nnU-Net (CUNET) for CRC detection, which was trained with fivefold cross-validation using annotated CT images. CUNET was validated using datasets covering various clinical situations and institutions: an internal test set (n = 103), internal patients with CRC first determined by CT (n = 54) and asymptomatic CRC (n = 51), and an external validation set from two institutions (n = 60). During each validation, data from the healthy population were added (internal = 60; external = 130). CUNET was compared with other deep CNNs: residual U-Net and EfficientDet. The CAD performances were evaluated using per-CRC sensitivity (true positive/all CRCs), free-response receiver operating characteristic (FROC), and jackknife alternative FROC (JAFROC) curves. RESULTS: CUNET showed a higher maximum per-CRC sensitivity than residual U-Net and EfficientDet (internal test set 91.3% vs. 61.2%, and 64.1%). The per-CRC sensitivity of CUNET at false-positive rates of 3.0 was as follows: internal CRC determined by CT, 89.3%; internal asymptomatic CRC, 87.3%; and external validation, 89.6%. CUNET detected 69.2% (9/13) of CRCs missed by radiologists and 89.7% (252/281) of CRCs from all validation sets. CONCLUSIONS: CUNET can detect CRC on abdominal CT in patients with various clinical situations and from external institutions. KEY POINTS: • Customized 3D U-Net of nnU-Net (CUNET) can be applied to the opportunistic detection of colorectal cancer (CRC) in abdominal CT, helping radiologists detect unexpected CRC. • CUNET showed the best performance at false-positive rates ≥ 3.0, and 30.1% of false-positives were in the colorectum. CUNET detected 69.2% (9/13) of CRCs missed by radiologists and 87.3% (48/55) of asymptomatic CRCs. • CUNET detected CRCs in multiple validation sets composed of varying clinical situations and from different institutions, and CUNET detected 89.7% (252/281) of CRCs from all validation sets.

2.
J Thorac Imaging ; 37(4): 253-261, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35749623

RESUMO

PURPOSE: We aimed to identify clinically relevant deep learning algorithms for emphysema quantification using low-dose chest computed tomography (LDCT) through an invitation-based competition. MATERIALS AND METHODS: The Korean Society of Imaging Informatics in Medicine (KSIIM) organized a challenge for emphysema quantification between November 24, 2020 and January 26, 2021. Seven invited research teams participated in this challenge. In total, 558 pairs of computed tomography (CT) scans (468 pairs for the training set, and 90 pairs for the test set) from 9 hospitals were collected retrospectively or prospectively. CT acquisition followed the hospitals' protocols to reflect the real-world clinical setting. Using the training set, each team developed an algorithm that generated converted LDCT by changing the pixel values of LDCT to simulate those of standard-dose CT (SDCT). The agreement between SDCT and LDCT was evaluated using the intraclass correlation coefficient (ICC; 2-way random effects, absolute agreement, and single rater) for the percentage of low-attenuated area below -950 HU (LAA-950 HU), κ value for emphysema categorization (LAA-950 HU, <5%, 5% to 10%, and ≥10%) and cosine similarity of LAA-950 HU. RESULTS: The mean LAA-950 HU of the test set was 14.2%±10.5% for SDCT, 25.4%±10.2% for unconverted LDCT, and 12.9%±10.4%, 11.7%±10.8%, and 12.4%±10.5% for converted LDCT (top 3 teams). The agreement between the SDCT and converted LDCT of the first-place team was 0.94 (95% confidence interval: 0.90, 0.97) for ICC, 0.71 (95% confidence interval: 0.58, 0.84) for categorical agreement, and 0.97 (interquartile range: 0.94 to 0.99) for cosine similarity. CONCLUSIONS: Emphysema quantification with LDCT was feasible through deep learning-based CT conversion strategies.


Assuntos
Aprendizado Profundo , Enfisema , Enfisema Pulmonar , Algoritmos , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...