Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 124: 391-400, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35462004

RESUMO

In flounder aquaculture, selective breeding plays a vital role in the development of disease-resistant traits and animals with high growth rates. Moreover, superior animals are required to achieve high profits. Unlike growth-related traits, disease-resistant experiments need to be conducted in a controlled environment, as the improper measurement of traits often leads to low genetic correlation and incorrect estimation of breeding values. In this study, viral hemorrhagic septicemia virus (VHSV) resistance was studied using a genome-wide association study (GWAS), and the genetic parameters were estimated. Genotyping was performed using a high-quality 70 K single nucleotide polymorphism (SNP) Affymetrix® Axiom® myDesign™ Genotyping Array of olive flounder. A heritability of ∼0.18 for resistance to VHSV was estimated using genomic information of the fish. According to the GWAS, significant SNPs were detected in chromosomes 21, 24, and contig AGQT02032065.1. Three SNPs showed significance at the genome-wide level (p < 1 × 10-6), while others showed significance above the suggestive cutoff (p < 1 × 10-4). The 3% phenotypic variation was explained by the highest significant SNP, named AX-419319631. Of the important genes for disease resistance, SNPs were associated with plcg1, epha4, clstn2, pik3cb, hes6, meis3, prx6, cep164, siae, and kirrel3b. Most of the genes associated with these SNPs have been previously reported with respect to viral entry, propagation, and immune mechanisms. Therefore, our study provides helpful information regarding VHSV resistance in olive flounder, which can be used for breeding applications.


Assuntos
Doenças dos Peixes , Linguado , Septicemia Hemorrágica Viral , Novirhabdovirus , Animais , Aquicultura , Linguado/genética , Estudo de Associação Genômica Ampla/veterinária , Septicemia Hemorrágica Viral/genética
2.
Dev Reprod ; 17(2): 79-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25949124

RESUMO

To understand the sex reversal characteristics in the longtooth grouper (Epinephelus bruneus), this study examined the sex reversal and artificial masculinization of wild caught E. bruneus reared in indoor rearing tank after a 17α-methyltestosterone injection. To domesticate a broodstock, 64 wild caught E. bruneus, between 47.0 to 110.0 cm in total length and from 1.5 to 21.4 kg in body weight, were reared in indoor rearing tank (4.0 to 5.0 m wide, and 2.5 to 3.0 m depth) for four years. Seven specimens showed sex reversal from female to male during indoor rearing condition, whose total length and body weights were from 63.0 to 99.0 cm and from 4.4 to 13.2 kg, respectively. After inducing artificial masculinization in 14 female E. bruneus with a 17α-methyltestosterone (2.0 mg/kg BW) implants for 3 years, spermiation occurred in 9 specimens (total length: 54.0 to 68.0 cm, body weight: 2.3 to 4.3 kg). Among the female to male sex reversals, two specimens returned back to being female, whose body weights were 2.8 kg (initially 2.6 kg) and 2.7 kg (initially 2.3 kg). Therefore, this study suggested that E. bruneus (> 3.0 kg) was more effective in masculinizing by 17α-methyltestosterone implants.

3.
Dev Reprod ; 17(4): 345-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25949150

RESUMO

This study examines the effects on fertilization rate (FR), hatching rate (HR), and normal individual rate after artificial fertilization using frozen thawed sperm according to the cryoprotectant (DMSO) concentration and the period of cryopreserved sperm of longtooth grouper, Epinephelus bruneus. Performing artificial fertilization using frozen-thawed sperm, after freezing the sperm at different DMSO concentration of 5.0%, 7.5%, 10.0% respectively, FR were (DMSO 5.0%: 99.5±0.8%, DMSO 7.5%: 99.5±0.7%, and DMSO 10.0%: 99.6±0.6%). The results are not significantly different from the control fresh sperm (100%). HR also (DMSO 5.0%: 96.2±2.3%, DMSO 7.5%: 95.3±3.6%, 10.0%: 96.6±1.8%) were not significantly different in each group. The normal individual rate after hatching using with control fresh sperm (98.4%±0.5) and DMSO concentration level of 5.0% (97.8±0.1%) were not significantly different. However, with 7.5% (97.2±0.6%) and 10.0% DMSO concentrations (95.9±0.2%) are lower than the normal individual rate after hatching observed in the control and 5.0% DMSO. Performing artificial fertilization using frozen-thawed sperm at different frozen period (2 days, 2 years, and 3 years), 10% DMSO FR and HR of 3 years (FR; 66.8±1.8%, HR: 82.0±12.9%) and 2 years (FR; 78.5±14.8%, HR: 79.3±0.6%) cryopreserved sperm were lower than control (FR; 100%, HR: 91.1±3.6%) and 2 days cryopreserved sperm (FR; 99.6±0.6%, HR: 96.6±1.8%). These results suggest suitable DMSO concentration ranges of cryopreservation sperm for E. bruneus is 5 to 10% and with 2 to 3 years cryopreservation period, cryopreservation sperm can be useful for seed production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...