Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 21(7): 3819-3823, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715698

RESUMO

This study focuses on analyzing the effects of the SiO2/Al2O3 ratio of a support on the physico-chemical properties of bead-type CoMo/HZSM-5 catalysts and on the catalytic performance during the hydrocracking reaction of PFO. CoMo/HZSM-5 catalysts were prepared by an incipient wetness method. Subsequently, binder-added catalysts were molded into the bead type catalysts. The N2 adsorption-dersorption results clearly indicate that the nanoporous structure was well developed in the bead-type CoMo/HZSM-5 catalyst. The CoMo/HZSM-5(30) catalyst not only possessed the highest number of acid sites but also showed the highest ratio of strong acid to weak acid sites. Moreover, the Lewis acid/Brönsted acid site ratio is highest with the CoMo/HZSM-5(30) catalysts. A hydrocracking reaction of PFO over the bead-type CoMo/HZSM-5 catalysts was conducted at 400 °C and under 40 atm in a fixed-bed reactor. The bead-type CoMo/HZSM-5(30) catalyst showed the highest BTXE yield with a sum of BTXE outcome of 43.0% in the catalytic cracking reaction of PFO, which is attributed to the synergistic combination of suitable acidity and hierarchical porosity.

2.
J Nanosci Nanotechnol ; 21(7): 4116-4120, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715756

RESUMO

The objective of this study is to evaluate the catalytic performance of pellet-type Ru/γ-Al2O3 as a catalyst during liquid-phase hydrogenation of the aromatic hydrocarbon. The Ru/γ-Al2O3 catalyst was prepared using a wet impregnation method. After adding a binder to Ru/γ-Al2O3, a pellet-type catalyst was obtained through an extrusion method. Nanoporous structures are well developed in the pellet-type Ru/γ-Al2O3 catalyst. The average pore sizes of the Ru/γ-Al2O3 catalysts were approximately 10 nm. The catalytic performance of the pellet-type Ru/γ-Al2O3 catalyst during ethylbenzene hydrogenation was evaluated in a trickle-bed reactor. When the ruthenium loading increased from 1 to 5 wt%, the number of active sites effective for the hydrogenation of ethylbenzene increased proportionally. In order to maximize the conversion of ethylbenzene to ethylcyclohexane, it was necessary to maintain a liquid phase hydrogenation reaction in the trickle bed reactor. In this regards, the reaction temperature should be lower than 90 °C. The conversion of ethylbenzene to ethylcyclohexane on the Ru(5 wt%)/γ-Al2O3 catalyst was highest, which is ascribed to the largest number of active sites of the catalyst.


Assuntos
Óxido de Alumínio , Derivados de Benzeno , Catálise , Hidrogenação
3.
ACS Nano ; 12(5): 4419-4430, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29714999

RESUMO

Lithium-oxygen (Li-O2) batteries are desirable for electric vehicles because of their high energy density. Li dendrite growth and severe electrolyte decomposition on Li metal are, however, challenging issues for the practical application of these batteries. In this connection, an electrochemically active two-dimensional phosphorene-derived lithium phosphide is introduced as a Li metal protective layer, where the nanosized protective layer on Li metal suppresses electrolyte decomposition and Li dendrite growth. This suppression is attributed to thermodynamic properties of the electrochemically active lithium phosphide protective layer. The electrolyte decomposition is suppressed on the protective layer because the redox potential of lithium phosphide layer is higher than that of electrolyte decomposition. Li plating is thermodynamically unfavorable on lithium phosphide layers, which hinders Li dendrite growth during cycling. As a result, the nanosized lithium phosphide protective layer improves the cycle performance of Li symmetric cells and Li-O2 batteries with various electrolytes including lithium bis(trifluoromethanesulfonyl)imide in N,N-dimethylacetamide. A variety of ex situ analyses and theoretical calculations support these behaviors of the phosphorene-derived lithium phosphide protective layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...