Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(2): 761-767, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029396

RESUMO

Electric vehicle manufacturers worldwide are demanding superior lithium-ion batteries, with high energy and power densities, compared to gasoline engines. Although conversion-type metal oxides are promising candidates for high-capacity anodes, low initial Coulombic efficiency (ICE) and poor capacity retention have hindered research on their applications. In this study, the ICE of conversion-type MoO3 is investigated, with a particular focus on the delithiation failure. A computational modeling predicts the concentration gradient of Li+ in MoO3 particles. The highly delithiated outer region of the particle forms a layer with low electronic conductivity, which impedes further delithiation. A comparative study using various sizes of MoO3 particles demonstrated that the electrode failure during delithiation is governed by the concentration gradient and the subsequent formation of a resistive shell. The proposed failure mechanism provides critical guidance for the development of conversion-type anode materials with improved electrochemical reversibility.

2.
Nano Converg ; 8(1): 21, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259945

RESUMO

Herein, the ferrocene redox indicator-based surface film characteristics of spinel lithium manganese oxide (LMO) were evaluated. The pre-cycling of spinel LMO generated a film on the LMO surface. The surface film deposited on LMO surface suppresses further electrolyte decomposition, while the penetration of approximately 0.7 nm-sized redox indicator is not prevented. The facile self-discharge of LMO and regeneration current from the ferrocenium molecule was observed from the redox indicator in a specifically designed four-electrode cell. From this electrochemical behavior, a small-sized HF molecule attack on the LMO surface through a carbonate-based electrolyte-derived film is defined; hence, the prevention of small-sized molecules into the deposited surface film is crucial for the enhancement of LiMn2O4-based lithium-ion batteries.

3.
ACS Appl Mater Interfaces ; 13(8): 9814-9819, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33587598

RESUMO

Extensive studies to develop high-capacity electrodes have been conducted worldwide to meet the urgent demand for next-generation lithium-ion batteries. In this work, we demonstrated a novel strategy to alter the lithiation mechanism of the transition metal oxide to increase the reversible capacity of the electrode material. A representative insertion-type negative electrode material, MoO2, was modified by introducing a heterogeneous element (Co) to synthesize the solid solution of CoO and MoO2 (CoMoO3). CoMoO3 exhibited a notably improved reversible capacity of 860 mA h g-1, attributed to the conversion reaction, in contrast to MoO2 that delivers 310 mA h g-1, as it is limited by the insertion reaction. X-ray absorption spectroscopy and X-ray diffraction demonstrated that CoO is converted to Co and Li2O, amorphizing the host structure, whereas the conversion of MoO2 takes place subsequently. Furthermore, the superior initial Coulombic efficiency of CoMoO3 (84.4%) to that of typical conversion materials is attributed to the highly conductive Co and MoO2, which reinforce the electronic conductivity of the active particles. The results obtained from this study provide significant insights to explore high capacity metal oxides for the advanced lithium-ion batteries.

4.
ACS Appl Mater Interfaces ; 11(12): 11306-11316, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30830735

RESUMO

4-(Trimethylsiloxy)-3-pentene-2-one (TMSPO) is tested as an electrolyte additive to enhance Coulombic efficiency and cycle retention for the Li/LiNi0.5Mn1.5O4 (LNMO) half-cell and graphite/LNMO full-cell. TMSPO carries two functional groups, siloxane (-Si-O-) and carbon-carbon (C═C) double bonds. It is found that the siloxane group reacts with hydrogen fluoride (HF), which is generated by hydrolysis of lithium hexafluorophosphate (LiPF6) by impure water in the electrolyte solution, to produce 4-hydroxypent-3-ene-2-one (HPO). The as-generated HPO, as well as TMSPO itself, is electrochemically oxidized to form a protective surface film on the LNMO electrode, in which it is inferred that the carbon-carbon (C═C) double bond initiates radical polymerization. The surface film derived from the TMSPO-added electrolyte shows a superior passivating ability to that generated from the pristine (TMSPO-free) electrolyte. The suppression of electrolyte oxidation enabled by the superior passivating ability offers two beneficial features to the half-cells and full-cells: the suppression of both HF generation and deposition of the resistive surface film on LNMO. As a result, the metal dissolution by HF attack on LNMO appears to be smaller by the addition of TMSPO. The cell polarization is also less significant because of the latter beneficial feature. In short, the bifunctional activity of TMSPO (HF scavenger and protective film former) allows an enhanced Coulombic efficiency and cycle retention to the half-cell and full-cell.

5.
ACS Nano ; 12(5): 4419-4430, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29714999

RESUMO

Lithium-oxygen (Li-O2) batteries are desirable for electric vehicles because of their high energy density. Li dendrite growth and severe electrolyte decomposition on Li metal are, however, challenging issues for the practical application of these batteries. In this connection, an electrochemically active two-dimensional phosphorene-derived lithium phosphide is introduced as a Li metal protective layer, where the nanosized protective layer on Li metal suppresses electrolyte decomposition and Li dendrite growth. This suppression is attributed to thermodynamic properties of the electrochemically active lithium phosphide protective layer. The electrolyte decomposition is suppressed on the protective layer because the redox potential of lithium phosphide layer is higher than that of electrolyte decomposition. Li plating is thermodynamically unfavorable on lithium phosphide layers, which hinders Li dendrite growth during cycling. As a result, the nanosized lithium phosphide protective layer improves the cycle performance of Li symmetric cells and Li-O2 batteries with various electrolytes including lithium bis(trifluoromethanesulfonyl)imide in N,N-dimethylacetamide. A variety of ex situ analyses and theoretical calculations support these behaviors of the phosphorene-derived lithium phosphide protective layer.

6.
Angew Chem Int Ed Engl ; 55(33): 9634-8, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27378653

RESUMO

All-solid-state sodium-ion batteries that operate at room temperature are attractive candidates for use in large-scale energy storage systems. However, materials innovation in solid electrolytes is imperative to fulfill multiple requirements, including high conductivity, functional synthesis protocols for achieving intimate ionic contact with active materials, and air stability. A new, highly conductive (1.1 mS cm(-1) at 25 °C, Ea =0.20 eV) and dry air stable sodium superionic conductor, tetragonal Na3 SbS4 , is described. Importantly, Na3 SbS4 can be prepared by scalable solution processes using methanol or water, and it exhibits high conductivities of 0.1-0.3 mS cm(-1) . The solution-processed, highly conductive solidified Na3 SbS4 electrolyte coated on an active material (NaCrO2 ) demonstrates dramatically improved electrochemical performance in all-solid-state batteries.

7.
Sci Rep ; 6: 22339, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923622

RESUMO

Despite remarkable strides in science and technology, the strategy for spilled oil collection has remained almost the same since the 1969 Santa Barbara oil spill. The graphene vessel devised here can bring about an important yet basic change in the strategy for spilled oil collection. When it is placed on the oil-covered seawater, the graphene vessel selectively separates the oil, then collects and stores the collected oil in the vessel all by itself without any external power inputs. Capillarity and gravity work together to fill this proto-type graphene vessel with the spilled oil at a rate that is higher than 20,000 liters per square meter per hour (LMH) with oil purity better than 99.9%, and allow the vessel to withstand a water head of 0.5 m. The vessel also has a superb chemical stability and recyclability. An expanded oil contact area, considerably greater than the thickness of the oil layer, forms at the reduced graphene oxide (rGO) foam interface upon contact with the spilled oil. This expanded contact area does not change much even when the oil layer thins out. As a result, the high oil collection rate is maintained throughout the recovery of spilled oil.

8.
Adv Mater ; 28(9): 1874-83, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26690558

RESUMO

A new, highly conductive (4.1 × 10(-4) S cm(-1) at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4 SnS4 is prepared using a homogeneous methanol solution. The solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4 SnS4), resulting in considerable improvements in the electrochemical performance of these electrodes over conventional mixture electrodes.

9.
Sci Rep ; 4: 5802, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25168309

RESUMO

Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

10.
Chemistry ; 20(38): 11980-92, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25113803

RESUMO

Na-ion batteries are an attractive alternative to Li-ion batteries for large-scale energy storage systems because of their low cost and the abundant Na resources. This Review provides a comprehensive overview of selected anode materials with high reversible capacities that can increase the energy density of Na-ion batteries. Moreover, we discuss the reaction and failure mechanisms of those anode materials with a view to suggesting promising strategies for improving their electrochemical performance.

11.
Angew Chem Int Ed Engl ; 53(40): 10654-7, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25130188

RESUMO

The lithiation/de-lithiation behavior of a ternary oxide (Li2MO3, where M = Mo or Ru) is examined. In the first lithiation, the metal oxide (MO2) component in Li2MO3 is lithiated by a conversion reaction to generate nano-sized metal (M) particles and two equivalents of Li2O. As a result, one idling Li2O equivalent is generated from Li2MO3. In the de-lithiation period, three equivalents of Li2O react with M to generate MO3. The first-cycle Coulombic efficiency is theoretically 150% since the initial Li2MO3 takes four Li(+) ions and four electrons per formula unit, whereas the M component is oxidized to MO3 by releasing six Li(+) ions and six electrons. In practice, the first-cycle Coulombic efficiency is less than 150% owing to an irreversible charge consumption for electrolyte decomposition. The as-generated MO3 is lithiated/de-lithiated from the second cycle with excellent cycle performance and rate capability.

12.
Adv Mater ; 26(24): 4139-44, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24711097

RESUMO

Sn4 P3 is introduced for the first time as an anode material for Na-ion batteries. Sn4 P3 delivers a high reversible capacity of 718 mA h g(-1), and shows very stable cycle performance with negligible capa-city fading over 100 cycles, which is attributed to the confinement effect of Sn nanocrystallites in the amorphous phosphorus matrix during cycling.

13.
Adv Mater ; 25(22): 3045-9, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23494991

RESUMO

An amorphous red phosphorus/carbon composite is obtained through a facile and simple ball milling process, and its electrochemical performance as an anode material for Na ion batteries is evaluated. The composite shows excellent electrochemical performance including a high specific capacity of 1890 mA h g(-1), negligible capacity fading over 30 cycles, an ideal redox potential (0.4 V vs. Na/Na(+)), and an excellent rate performance, thus making it a promising candidate for Na ion batteries.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Fósforo/química , Sódio/química , Cor , Condutividade Elétrica , Eletrodos
14.
J Am Chem Soc ; 134(36): 15010-5, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22924470

RESUMO

Extensive applications of rechargeable lithium-ion batteries (LIBs) to various portable electronic devices and hybrid electric vehicles result in the increasing demand for the development of electrode materials with improved electrochemical performance including high energy, power density, and excellent cyclability, while maintaining low production cost. Here, we present a direct synthesis of ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. Uniform-sized ferrite nanocrystals and carbon materials were synthesized simultaneously through a single heating procedure using metal-oleate complex as the precursors for both ferrite and carbon. 2-D nanostructures were obtained by using sodium sulfate salt powder as a sacrificial template. The 2-D ferrite/carbon nanocomposites exhibited excellent cycling stability and rate performance derived from 2-D nanostructural characteristics. The synthetic procedure is simple, inexpensive, and scalable for mass production, and the highly ordered 2-D structure of these nanocomposites has great potential for many future applications.

15.
Adv Mater ; 24(26): 3562-7, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22678780

RESUMO

Disodium terephthalate and its various derivatives are synthesized via simple acid-base chemistry for anode materials in Na ion batteries. They show excellent electrochemical performance, including little capacity fading over 90 cycles, ideal redox potential, and excellent rate performance, making them promising candidates for Na ion batteries.


Assuntos
Fontes de Energia Elétrica , Ácidos Ftálicos/química , Sódio/química , Eletrodos , Modelos Moleculares , Conformação Molecular
16.
Langmuir ; 25(19): 11947-54, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19788234

RESUMO

Electrochemically active surface area (ECA) of a polycrystalline Pt electrode is measured from the pseudocapacitance (Cp) values that are associated with hydrogen underpotential deposition. The potential-dependent Cp values are extracted from the raw impedance data by removing the interferences coming from the double-layer charging and hydrogen evolution. Three different approaches have been made: (i) by using the proportionality between the capacitance and area of the capacitive peak on imaginary capacitance plots, (ii) by complex nonlinear least-squares (CNLS) fitting on both the imaginary and real part of complex capacitance with appropriate equivalent circuits, and (iii) by using the modified Kramers-Kronig (K-K) relation. The first approach is the simplest one for the Cp measurement but cannot be used in the hydrogen evolution region (<0.05 V vs RHE), whereas the measurement can be extended down to -0.01 V with the second method. The isotherm fitting on the Cp(E) profile shows that the saturation of adsorbed hydrogen is reached at -0.1 V vs RHE. Faster data acquisition is possible with the third approach since the data analysis can be made without the time-consuming low frequency data (<100 Hz). The roughness factor and ECA of the Pt electrode are calculated from the electric charge that is obtained by integrating the potential-dependent Cp values; the roughness factor (1.4-1.5) lies within the normal range for planar electrodes.

17.
Molecules ; 14(5): 1840-51, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19471204

RESUMO

Several new acyclic ammonium-TFSI ionic liquids with an allyl substituent(s) were synthesized and their physicochemical and electrochemical properties were characterized. [AAMM]Am-TFSI (3) with two allyl groups showed the widest electrochemical stability window (5.9 V) among the ammonium-based ILs reported to date because of the increment of both the anodic and cathodic limits. The charge-discharge performance of a LiCoO(2)-based half-cell containing [AAMM]Am-TFSI as an electrolyte was better in cycleability (the capacity retention ratio: 99% after 20 cycles) than that of the cell with the corresponding partially saturated analogue, [AMMP]Am-TFSI (2) (the capacity retention ratio: 92% after 20 cycles).


Assuntos
Eletrólitos , Líquidos Iônicos , Compostos Orgânicos , Compostos de Amônio Quaternário , Eletroquímica , Líquidos Iônicos/síntese química , Líquidos Iônicos/química , Estrutura Molecular , Compostos Orgânicos/síntese química , Compostos Orgânicos/química , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Temperatura
18.
J Am Chem Soc ; 125(19): 5652-3, 2003 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-12733902

RESUMO

The tributylphenyltin (TBPT)-encapsulated resorcinol (R)-formaldehyde (F) sol was prepared inside the micelles of cetyltrimethylammonium bromide (CTAB). This core-shell-type sol was polymerized and further carbonized to obtain nanosized Sn-encapsulated spherical hollow carbon. The size of spherical hollow carbon and Sn metal particles was controllable by changing the R/CTAB or TBPT/CTAB mole ratio, respectively. It is likely that, when tested as the anode in Li secondary batteries, the spherical hollow carbon acts as a barrier to prevent the aggregation of nanosized Sn particles and provides a void space for Sn metal particles to experience a volume change without a collapse of carbon shell, giving rise to a better cycle performance than that of pure Sn metal.

19.
Chem Commun (Camb) ; (22): 2722-3, 2002 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12510317

RESUMO

Surfactant-templated sol-gel polymerisation was explored to synthesize the resorcinol-formaldehyde (RF) gels without supercritical drying step, which were further carbonised to obtain porous carbons of a tunable pore size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...